
Evaluation Strategies for HCI Toolkit Research
David Ledo1*, Steven Houben2*, Jo Vermeulen3*,

Nicolai Marquardt4, Lora Oehlberg1 and Saul Greenberg1

1 Department of Computer Science, University of Calgary, Canada · {first.last}@ucalgary.ca
2 School of Computing and Communications, Lancaster University, UK · s.houben@lancaster.ac.uk

3 Department of Computer Science, Aarhus University, Denmark · jo.vermeulen@cs.au.dk
4 UCL Interaction Centre, University College London, UK · n.marquardt@ucl.ac.uk

*Authors contributed equally to the work.
ABSTRACT
Toolkit research plays an important role in the field of HCI,
as it can heavily influence both the design and implementa-
tion of interactive systems. For publication, the HCI commu-
nity typically expects toolkit research to include an evalua-
tion component. The problem is that toolkit evaluation is
challenging, as it is often unclear what ‘evaluating’ a toolkit
means and what methods are appropriate. To address this
problem, we analyzed 68 published toolkit papers. From our
analysis, we provide an overview of, reflection on, and dis-
cussion of evaluation methods for toolkit contributions. We
identify and discuss the value of four toolkit evaluation strat-
egies, including the associated techniques that each employs.
We offer a categorization of evaluation strategies for toolkit
researchers, along with a discussion of the value, potential
limitations, and trade-offs associated with each strategy.
Author Keywords
Toolkits; user interfaces; prototyping; design; evaluation.
ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g. HCI):
User Interfaces – Evaluation/methodology.

INTRODUCTION
Within HCI, Greenberg [30] defined toolkits as a way to en-
capsulate interface design concepts for programmers, includ-
ing widget sets, interface builders, and development envi-
ronments. Such toolkits are used by designers and developers
to create interactive applications. Thus, they are generative
platforms designed to create new artifacts, while simplifying
the authoring process and enabling creative exploration.
While toolkits in HCI research are widespread, researchers
experience toolkit papers as being hard to publish [77] for
various reasons. For example, toolkits are sometimes consid-
ered as merely engineering, as opposed to research, when in
reality some interactive systems are ‘sketches’ using code as
a medium to explore research contributions, whereas others

embody their contributions in the code itself [27]. Some-
times, toolkit researchers are asked for a particular evaluation
method without consideration of whether such an evaluation
is necessary or appropriate to the particular toolkit contribu-
tion. Consequently, acceptance of toolkits as a research con-
tribution remains a challenge and a topic of much recurrent
discussion [8,27,30,66,73,82]. In line with other areas of HCI
[30,82], we should expect HCI toolkit research to use appro-
priate evaluation methods to best match the particular re-
search problem under consideration [31,45,86]. However,
while research to date has used evaluation methods, there is
little overall reflection on what methods are used to evaluate
toolkits, when these are appropriate, and how the methods
achieve this through different techniques.
The last two decades have seen an increase in HCI toolkit
papers [66]. These papers typically employ a range of evalua-
tion methods, often borrowing and combining techniques
from software engineering, design, and usability evaluation.
From this corpus, we can consider how toolkit researchers
collectively derive what evaluation methods are useful, when
they are appropriate and how they are performed.
Based on an analysis of 68 representative toolkit papers, this
paper contributes an overview and in-depth discussion of
evaluation methods for toolkits in HCI research. We identify
four types of evaluation strategies: (1) demonstration, (2)
usage, (3) technical benchmarks, and (4) heuristics. We pre-
sent these four evaluation types, and opine on the value and
limitations associated with each strategy. Our synthesis is
based on the sample of representative toolkit papers. We link
interpretations to both our own experiences and earlier work
by other toolkit researchers. Researchers can use this synthe-
sis of methods to consider and select appropriate evaluation
techniques for their toolkit research.
WHAT IS A TOOLKIT?
Within HCI literature, the term ‘toolkit’ is widely used to
describe various types of software, hardware, design and
conceptual frameworks. Toolkit research falls into a category
of constructive research, which Oulasvirta and Hornbæk
define as “producing understanding about the construction of
an interactive artefact for some purpose in human use of
computing” [83]. They specify that constructive research is
driven by the absence of a (full) known solution or resources
to implement and deploy that solution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org
CHI 2018, April 21–26, 2018, Montreal, QC, Canada
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5620-6/18/04….$15.00
https://doi.org/10.1145/3173574.3173610

mailto:%7bfirst.last%7d@ucalgary.ca
mailto:s.houben@lancaster.ac.uk
mailto:jo.vermeulen@cs.au.dk
mailto:n.marquardt@ucl.ac.uk
mailto:permissions@acm.org
https://doi.org/10.1145/3173574.3173610

As constructive research, toolkits examine new conceptual,
design or technical solutions to unsolved problems. To clari-
fy our review’s scope, we define and summarize what is
meant by “toolkit” and “toolkit evaluation”, and why HCI
researchers build toolkits.
Defining a Toolkit
We extend Greenberg’s original definition [30] to define
toolkits as generative platforms designed to create new inter-
active artifacts, provide easy access to complex algorithms,
enable fast prototyping of software and hardware interfaces,
and/or enable creative exploration of design spaces. Hence,
toolkits present users with a programming or configuration
environment consisting of many defined permutable building
blocks, structures, or primitives, with a sequencing of logical
or design flow affording a path of least resistance. Toolkits
may include automation (e.g. recognizing and saving ges-
tures [67]) or monitoring real-time data (e.g. visualization
tools [52,64]) to provide developers with information about
their own process and results.
Why Do HCI Researchers Build Toolkits?
Before discussing toolkit evaluation, we elaborate on what
they contribute to HCI research. Wobbrock and Kientz posi-
tion toolkits as artifact contributions, where “new knowledge
is embedded in and manifested by artifacts and the support-
ing materials that describe them” [111]. We summarize dis-
cussions by Myers et. al [73], Olsen [82] and Greenberg [30]
on the value of HCI toolkits into five goals:
G1. Reducing Authoring Time and Complexity. Toolkits
make it easier for users to author new interactive systems by
encapsulating concepts to simplify expertise [30,82].
G2. Creating Paths of Least Resistance. Toolkits define
rules or pathways for users to create new solutions, leading
them to right solutions and away from wrong ones [73].
G3. Empowering New Audiences. Given that toolkits reduce
the effort to build new interactive solutions, they can enable
new audiences to author these solutions. For example, Olsen

[82] discusses how interface builders opened interface design
to artists and designers.
G4. Integrating with Current Practices and Infrastructures.
Toolkits can align their ideas to existing infrastructure and
standards, enabling power in combination [82] and highlight-
ing the value of infrastructure research for HCI [25]. For ex-
ample, D3 [14] integrated with popular existing standards,
which arguably contributed significantly to its uptake.
G5. Enabling Replication and Creative Exploration.
Toolkits allow for replication of ideas that explore a concept
[30], which collectively can create a new suite of tools that
work together to enable scale and create “larger and more
powerful solutions than ever before” [82].
Evaluating Toolkits
A common concern among HCI toolkit and system research-
ers is the difficulty in publishing [77]. This might be due to
the expectations and prevalence of evaluation methods (e.g.
user studies), regardless of whether the methods are neces-
sary or appropriate to the toolkit’s contribution. Part of the
problem is a lack of clear methods [77] or a clear definition
of ‘evaluation’ within a toolkit context. As toolkit designers,
our stance is that the evaluation of a toolkit must stem from
the claims of the paper. Evaluation is a means to follow
through with the proposed claims of the innovation. We
should ask ourselves: what do we get out of the evaluation?
Toolkits are typically different from systems that perform
one task (e.g. a system, algorithm, or an interaction tech-
nique) as they provide generative, open-ended authoring
within a solution space. Toolkit users can create different
solutions by reusing, combining and adapting the building
blocks provided by the toolkit. Consequently, the trade-off to
such generative power is the large space that remains under
explored. Evaluation methods that only examine a small sub-
set of the toolkit may not demonstrate the research contribu-
tion, nor do they necessarily determine a toolkit’s success. As
summarized by Olsen [82] in his reflective paper on evaluat-

Table 1. Overview of all toolkits in the sample. Types: (1) Demonstration, (2) Usage, (3) Technical Performance and (4) Heuristics.

ing systems research: “simple metrics can produce simplistic
progress that is not necessarily meaningful.” The central
question is thus: what is an evaluation? And, how do we re-
flect and evaluate such complex toolkit research?
METHODOLOGY
This paper elucidates evaluation practices observed in mod-
ern toolkit research within the HCI community. To build up
an in-depth understanding of contemporary evaluation prac-
tices, we report the results of a meta-review based on an
analysis of a representative set of toolkit papers.
Dataset
To collect a representative set of HCI toolkit papers, we
gathered 68 papers matching the following inclusion criteria.
Publication Venue and Date, Keywords: we initially select-
ed 58 toolkit papers that were published since 2000 at the
major ACM SIGCHI venues (CHI, UIST, DIS, Ubicomp,
TEI, MobileHCI). We included papers containing keywords:
toolkit, design tool, prototyping tool, framework, API. All 58
papers comply with our proposed toolkit definition.
Exemplary Papers. We then identified 10 additional papers
published elsewhere, based on exemplary impact (e.g. cita-
tions, uptake) such as D3 [14], Piccolo/Jazz [6], and the Con-
text Toolkit [91]. Our total dataset includes 68 papers (Table
1). While other toolkit papers exist, our dataset serves as a
representative sample from which we could (1) gather insight
and (2) initiate meaningful discussion about evaluation.
Analysis and Results
The dataset was analyzed via several steps. One of the au-
thors conducted open-coding [16] on a subset of our sample,
describing the evaluation methods used in each publication.
Next, we collectively identified an initial set of evaluation
methods and their variations as used across papers. At this
point, four other co-authors performed focused coding [16]
on the entire sample. We continued to apply the codes to the
rest of the sample, iteratively refining and revisiting the cod-
ing schema. After coding all papers in our sample, we creat-
ed categories [16] to derive the overarching evaluation strat-
egies used by toolkit researchers, thus arriving at the four
evaluation strategies that we identify as (1) demonstration,
(2) usage, (3) technical evaluation, and (4) heuristic evalua-
tion. Table 1 summarizes the analysis, showing the count of
evaluation strategies seen in our sample. We caution that this
frequency count is not necessarily indicative of a strategy’s
overall appropriateness or success.

The following sections step through the four evaluation
types, summarized in Table 2. For each type, we discuss their
value and the specific techniques used. We then reflect on
challenges for that type, followed by opportunities to
strengthen the evaluation: opinions are based on our insights
gained from data analysis, our experiences and/or opinions
offered by other researchers. The result is a set of techniques
that researchers can use, on their own or in combination, to
assess claims made about their toolkits.
TYPE 1: DEMONSTRATION
The now famous “mother of all demos” by Douglas Engel-
bart [26] established how demonstrating new technology can
be a powerful way of communicating, clarifying and simply
showing new ideas and concepts. The transferability of an
idea to neighbouring problem spaces is often shown by
demonstrating application examples [83]. In our sample, 66
out of 68 papers used demonstrations of what the toolkit can
do, either as the only method (19/68) or in combination with
other methods (47/68). Demonstrations show what the toolkit
might support, as well as how users might work with it, rang-
ing from showing new concepts [32,91], to focused case
studies [4,96] to design space explorations [43,54,64].
Why Use Demonstrations?
The goal of a demonstration is to use examples and scenarios
to clarify how the toolkit’s capabilities enable the claimed
applications. A demonstration is an existence proof showing
that it is feasible to use and combine the toolkit’s components
into examples that exhibit the toolkit’s purpose and design
principles. These examples can illustrate different aspects of
the toolkit, such as using the basic building blocks, demon-
strating the workflows, or discussing the included tools.
Since toolkits are a ‘language’ to simplify the creation of new
interactive systems [30], demonstrations describe and show
how toolkits enable paths of least resistance for authoring.
In its most basic form, a demonstration consists of examples
exploring the expressiveness of the toolkit by showing a
range of different applications. More systematic approaches
include explorations of the threshold, ceiling or design space
supported by the toolkit. The threshold is the user’s ability to
get started using the toolkit, while ceiling refers to how much
can be achieved using the toolkit [73]. While demonstrations
may not show the full ‘height’ of the ceiling, they are an in-
dicator of the toolkit’s achievable complexity and potential
solution space. The principles and goals of the toolkit can
also be demonstrated through a design space exploration
which enumerates design possibilities [106] and gives exam-
ples from different points in that space.
Evaluation Techniques as Used in Demonstrations
Our sample reveals several techniques to demonstrate a
toolkit. These techniques are not mutually exclusive and can
be combined in different ways. The simplest unit of meas-
urement for demonstration is an individual instance. While
multiple instances can be described separately, researchers
may carefully select instances as collections to either explore
the toolkit’s depth (case studies) or its generative breadth

Table 2. A summary of the four evaluation strategies.

(design spaces). Toolkit authors may also go beyond describ-
ing the features of instances, by showing the detailed ‘how
to’ steps involved in the instance authoring process.

Individual Instances
1. Novel Examples. Demonstration of a toolkit can be done
by showing the implementation of novel applications, sys-
tems or interaction techniques. The Context Toolkit [91] is a
classic case of how example applications are used to demon-
strate the underlying concepts of context-awareness [97]. A
more recent example is WorldKit [113], which demonstrates
projection-based touch interfaces on everyday surfaces in
four different environments. Similarly, in DiamondSpin [98],
the authors explore the capabilities of their multi-touch table
toolkit by showing five different tabletop designs. Peripheral
Displays Toolkit [68] uses three applications to demonstrate
ways to enable new peripheral displays. Finally, Sauron [93]
describes three prototypes to demonstrate the toolkit’s inter-
active features for physical prototypes. What is important is
that these examples detail how the features, design principles,
and building blocks enable new applications.
2. Replicated Examples. Toolkits often facilitate authoring of
systems that were previously considered difficult to build.
Recreating prior applications, systems or interaction tech-
niques shows how the toolkit supports and encapsulates prior
ideas into a broader solution space. For instance, Prefuse [38]
states that they “reimplemented existing visualizations and
crafted novel designs to test the expressiveness, effectiveness,
and scalability of the toolkit”. In d.tools [37], the authors
recreated a classic iPod interface, while the TouchID Toolkit
[67] recreated prior work from external sources (e.g. Rock
and Rails [108]) in bimanual interaction. Similarly,
SwingStates [2] and Prefab [20] illustrate the expressiveness
and power of their toolkit by recreating interaction tech-
niques in the research literature (e.g. Bubble Cursor [34],
CrossY [1]). These examples demonstrate how toolkits re-
duce complexity, effort and development time for recreating
applications. Further, replication can demonstrate how the
toolkit generalizes across a variety of examples.

Collections
3. Case Studies. Because toolkits often support complex ap-
plications, case studies (typically concurrent research pro-
jects) can help explore and elaborate the toolkit in greater
depth. Five of our 68 papers included case studies to reveal
what their toolkit can do. The iStuff toolkit [4] presents case
studies of other research projects that use the toolkit. Similar-
ly, the SoD toolkit [96] describes its use in complex case
studies: an oil and gas exploration application and an emer-
gency response system. Prefuse [38] reports on the design of
Vizster, a custom visualization tool for social media data.
Although case studies are less common than examples, they
convincingly demonstrate the toolkit’s application within
complex scenarios as opposed to small example applications.
4. Exploration of a Design Space. A design space explora-
tion exemplifies the breadth of applications supported by the
toolkit by fitting it into a broader research theme. Design

spaces often consist of dimensions with properties (categori-
cal or spectrum variables) [106] that examples can align to. A
toolkit author can create a collection of examples that each
examine different points in the design space. For example,
WatchConnect [43] describes a design space of how the
toolkit supports interaction across a watch prototype and a
second screen. By providing five examples, including both
replicated and novel techniques, the authors satisfy the
smartwatch + second screen design space by example. The
Proximity Toolkit [64] similarly describes the design dimen-
sions of proxemic interaction [5] (e.g. distance, orientation,
identity) and demonstrates through examples how the toolkit
enables new proxemic-aware applications. Pineal [54] ex-
plores different ways of using and repurposing mobile sen-
sors and outputs to author smart objects, using a combination
of novel examples and replication. Finally, DART [61] is an
example of a toolkit supporting the exploration of a design
space through a range of ‘behaviors’ and examples. A design
space exploration is thus a systematic way of trying to map
out possible design boundaries. Although exploring the full
design space is often impossible, examples demonstrate the
breadth of designs enabled by the toolkit.

Going Beyond Descriptions
5. ‘How To’ Scenarios. Toolkit papers can demonstrate a
step-by-step breakdown of how a user creates a specific ap-
plication. Scenarios break down tasks into individual steps
that demonstrate the workflow, showing the results of each
step. We found three ways to describe scenarios. One way is
to dedicate a section to describe how one example is authored
(e.g. RetroFab [87], Pineal [54]). Second, a scenario can be
used throughout the paper to show how different parts of an
example come together (e.g. the Proximity Toolkit [64]).
Demo scenarios, as in VoodooSketch [12] and Circuitstack
[104] are common ways to explain how users might experi-
ence a toolkit’s path of least resistance. Third, authors might
include code samples. For instance, Prefuse [38] and Weave
[17] use code snippets explaining how certain design princi-
ples or building blocks are supported directly in code.
Challenges
Using demonstrations to ‘evaluate’ a toolkit poses several
challenges. First is its rationale: although novel demonstra-
tions built atop the toolkit illustrate toolkit expressiveness, it
is sometimes unclear who would use such applications and
why. Second, while creating demonstrations can describe
‘what if’ scenarios, the demonstration itself may not show
that the toolkit can indeed be used by people other than the
toolkit’s authors. Such lack of external validation may pose
issues depending on the claims made in the paper. Third,
example applications often aim to implement aspects of a
potential future today; however, the target audience might
not yet exist or simply be unclear. Speculating on the intend-
ed audience creates the risk of an elastic user [18], where the
definition of the target audience is stretched to accommodate
implementation decisions and toolkit design. Finally, many
toolkit systems (e.g. [64, 88, 112]) work with specialized or
custom-built hardware. In creating these arrangements, the

authors could alienate the potential audience, as some end-
users would not be able to recreate these complicated setups.
Reflection and Opportunities
Provide Rationale for Toolkit Design and Examples. Within
every piece of technology lie assumptions, principles and
experiences that guide the design of that technology. Many of
these assumptions can come across as arbitrary when design-
ing toolkits. However, toolkit authors often rely on their ex-
perience even if they do not explicitly mention it. Discussing
the understanding of the challenges, perhaps informed by
earlier studies or experiences with other tools or toolkits, can
help address why different decisions were made. Nebeling et
al.’s XD toolkit suite [74,75,76] is a compelling example of
how to do this. They constructed several toolkits to structur-
ally and systematically explore the large design space of
cross-device computing. They clearly motivated the design
and development of each toolkit by earlier experiences in
designing toolkits and systems. More generally, research by
design [39] helps explore concrete implementations of ideas.
First-Hand Experience. Toolkit authors often have experi-
ence creating applications that the toolkit will support, and
thus are genuinely familiar with the development challenges
and steps that need simplifying. This experience leads to au-
tobiographical design [78] informing the toolkit design pro-
cess. In Phidgets [32], the authors discuss their frustrations in
authoring hardware-based applications, which informed their
design and implementation. A toolkit may also leverage ex-
periences with building similar toolkits. The design of D3
[14] evolved from the authors’ earlier experiences in creating
visualization toolkits (e.g. Prefuse [38], ProtoVis [13]).
Prior Work. Challenges identified in previous research can
help motivate the design of toolkits. For instance, the Context
Toolkit [91] describes challenges in authoring context-aware
applications based on prior work (e.g. new types of sensing
from multiple distributed sources).
Formative Studies. Authors can perform formative studies to
understand their intended target audience. For instance, in
d.tools [37], the authors conducted interviews at product de-
sign companies. Understanding current practices can help
address challenges with the design of the toolkit.
Discuss Boundaries and Underlying Assumptions. Despite
including a ‘limitations’ section, toolkit authors often do not
discuss aspects of the toolkit that do not work well. Critically
discussing what does not work or the tasks complicated by
the toolkit might help steer away from a ‘sales pitch’.
TYPE 2: USAGE
While demonstrations answer the question of ‘what can be
built with the toolkit’, evaluating usage helps verify ‘who can
use the toolkit’ under certain circumstances, i.e., which tasks
or activities can a target user group perform and which ones
still remain challenging? To evaluate if and how a user group
can actually use the tool, it is important to investigate how
that user group uses and appropriates the toolkit. Our sample
shows that more than half of the papers (35/68) include usage

studies. Only one toolkit paper uses a usage study as the only
evaluation method [42]. Usage studies are often combined
with demonstrations (33/68) or technical evaluations (9/68).
Why Evaluate Usage?
The defining feature of usage evaluations is the involvement
of external users working with the toolkit. Much of usage
evaluation is informed by traditional user studies [24,53,81],
and can help verify whether the toolkit is (1) conceptually
clear, (2) easy to use, or (3) valuable to the audience.
Given the prevalence of usability studies in HCI (e.g.
[24,81]), many toolkit papers examine the toolkit’s usability
— i.e., how easy it is to use the toolkit. Common measures
are users’ opinions, preferences, completion time, the number
of steps (e.g. lines of code), or number of mistakes. In addi-
tion, given that toolkits often propose new workflows, or
enable creation of new kinds of artifacts, it is important to
know if it will be useful to the target audience. In looking for
utility, researchers inquire into the audiences’ interest or out-
comes. One way to assess utility is to look at the output of
the toolkit. This consists of investigating the artifacts that the
users authored with the toolkit. Lastly, a usage evaluation
might look to understand use of the toolkit: how a user ap-
propriates a toolkit, how it is used over time, and what kind
of workflows are developed. The processes together with the
end results can point towards paths of least resistance, some
which may differ from the ones the toolkit authors’ intended.
Evaluation Techniques as Used in Usage Studies
Given the involvement of external people in usage evalua-
tions, toolkit authors can perform a variety of evaluations
with users, each yielding different kinds of insights. Our data
revealed five ways to conduct usage studies and two addi-
tional complementary techniques for eliciting user feedback.
The first four techniques refer to controlled lab experiments,
where participants are given consistent tasks that can yield
accurate measures, such as completion time. The fifth tech-
nique is somewhat more aligned with ‘in the wild’ studies,
which can provide more realism [69,89]. The last two tech-
niques are complementary methods to elicit user feedback.

Ways to Conduct Usage Studies
1. Usability Study. When toolkits claim that they facilitate a
process, authors may choose to carry out a usability study.
This can help identify issues with the toolkit, using measures
of participants’ performance (e.g. time, accuracy), and further
qualitative feedback. Participants are typically given pro-
gramming tasks that exploit various aspects of the toolkit.
These programming tasks tend to be closed-ended, though
some may include a small degree of open-endedness (e.g.
[36]). To increase control, some tasks may incorporate pre-
written skeleton code (e.g. [74]). Usability studies can exam-
ine various aspects of toolkits. For example, Papier-Mâché
[52] shows an evaluation of the toolkit’s API usability, which
revealed inconsistency in the naming of software components
and aspects of the toolkit that lacked documentation. Hart-
mann et al. coined the term “first-use study” [37] in which
participants are exposed to a toolkit for the first time and

assigned different tasks. In d.tools [37], the study aimed at
determining the threshold [73] of the system, while in Exem-
plar [36] the focus was on determining the successes and
shortcomings of the tool. The study in Exemplar [36] com-
bined close-ended tasks with a more open-ended task. Some
papers report modifying the toolkit to address issues identi-
fied in a usability study [52,60], which Greenberg and Bux-
ton suggest should be the main goal of usability studies [31].
2. A/B Comparisons. One way to suggest improvement over
existing work is to compare the new toolkit to a baseline.
Baselines include not having a toolkit, or working with a
different toolkit. In MAUI [40], the authors compare differ-
ent platforms to measure what they defined as effort: number
of classes, total lines of code, lines written for feedthrough
and development time. By comparing it to GroupKit (a prior
toolkit that supports a similar task [90]) and Java (no toolkit),
the authors can show the degree of improvement from the
current state-of-the-art. A/B comparisons could test for varia-
tions within the toolkit. Lin and Landay [59] compared a full
version of their prototyping tool to one without the key fea-
tures (patterns and layers) to determine the improvement and
preference. Finally, both Paperbox [107] and XDStudio [75]
compare different configurations of their toolkit.
3. Walkthrough Demonstrations. A walkthrough demonstra-
tion consists of showing the toolkit to a potential user and
gathering their overall impressions. Unlike cognitive
walkthroughs [85], walkthrough demonstrations are not
about the user working directly with the tool to identify usa-
bility problems. In a walkthrough demonstration, the experi-
menter has full control and explains the workflow to partici-
pants, together with examples and even limitations. This ap-
proach is particularly suitable when toolkit creators want to
get feedback on the utility of their toolkit, as it removes the
focus from using the toolkit (as one might find in a usability
study) and shifts it towards the value of having the toolkit.
While the walkthrough technique has not been explored ex-
tensively, RetroFab [87] is an example of this approach. This
technique can be useful to gather feedback on the idea rather
than the specific toolkit implementation, and might serve for
toolkits that are not ready for usability testing or deployment.
4. Observation. Direct observation helps inform how users
approached the toolkit to solve problems ranging from closed
tasks requiring a specific solution to a given problem, to open
tasks where participants formulate the problem and use the
toolkit to create their own solution. While our analyzed pa-
pers rarely presented any in-depth discussion of participants’
processes or workflows, they did provide examples of the
toolkit’s use. HapticTouch [55] tested participants’ ability to
transfer concepts about haptics, which were provided at vary-
ing levels of abstraction, into an interactive application: its
authors assessed the paths of least resistance the toolkit af-
forded to solve both open and close-ended tasks. Our analysis
also saw observational studies used within short-term [84]
and long-term [51,103] workshop settings involving multiple
participants. For example, Pfeiffer et al. [84] asked partici-

pants to brainstorm ideas and create Wizard-of-Oz prototypes
using the toolkit. Their video analysis discusses the applica-
tions created, as well as in-depth details of how their crea-
tions were made. In C4 [51], participants attended 3-week
workshops, with some staying further for a 4-week artist res-
idency: observation informed its creators on how design de-
cisions held up in the implementation.
5. Take-Home Studies. Some external validity [69] can be
acquired by conducting experiments outside lab settings.
While it is difficult to deploy a toolkit before it has gained
broader acceptance, researchers can provide their toolkit to
“early adopter” participants. Participants receive the toolkit
(and all necessary components and documentation) to create
any applications of their liking within a given timeframe (e.g.
a week). Phidgets [32], jQMultiTouch [76] and the Proximity
Toolkit [64] are iconic examples where students in an ad-
vanced HCI class were given access to the toolkits and nec-
essary hardware components to create interesting examples
as a prompt. They all demonstrate how students could easily
work with the proposed constructs, where they focused on
design aspects of the assignment versus low-level coding.

Eliciting User Feedback
6. Likert Scale Questionnaires. Likert scales provide a non-
parametric value pertaining to a question. The questions can
later be analyzed either through non-parametric tests or by
examining the median values. In toolkit research, while often
acting as validation of claims (e.g. ease of use), Likert scales
can formalize the results to clarify a hypothesis. For instance,
in Exemplar [36], the authors were unsure as to whether the
system empowered both experts and non-experts, as the per-
formance between these two can differ considerably. By us-
ing Likert scale questionnaires, participant responses con-
firmed that both experts and non-experts felt empowered,
thus validating their hypothesis. Other examples like Dam-
ask [59], d.tools [37], Paperbox [107] and Panelrama [114]
use Likert scales to quantify user feedback on their system.
This feedback often complements other usability results.
7. Open-Ended Interviews. In our sample, 12 papers ask
participants about their experiences or challenges performing
their tasks, which provided the authors with insight in terms
of processes, successes and shortcomings of the toolkit
[38,42,114]. Interview questions can start from a script, but
are open in that they allow further inquiry as opportunities
arise, such as pursuing interesting and/or unclear responses.
Quoting participants gives life and adds strength to findings
[17,60,95]. Interviews can also expose how users perceive
toolkit features, and can contextualize other usage data.
Challenges
Evaluating the toolkit’s implementation through usability
tests could distract from the conceptual ideas as well as the
opportunities facilitated by the toolkit. Olsen [82] warns
against falling into “the usability trap”, as the three underly-
ing assumptions for usability evaluation – walk up and use,
standardized tasks, and problem scalability – are rarely met
for systems research. Additionally, toolkits in HCI research

are still prototypes. It is difficult for a small team to create a
toolkit with the quality of a commercial product (fatal flaw
fallacy [82]). Controlled experiments measuring usability are
limited in scope and evaluate a very small subset of what the
toolkit can accomplish, making it difficult to generalize usage
results. Furthermore, selected experimental tasks might fa-
vour elements that the toolkit can accomplish. In achieving
control of the tasks, researchers may optimize for these tasks,
or only create what a usability test can measure [82].
While observations of people using the toolkit provide in-
formation about use, they may not assess how the toolkit
fares in the real world. McGrath [69] discusses this as the
trade-off between realism, precision and control. Even in
“take home” studies, realism is compromised: participants
are given all necessary components, instruction, access to
resources (e.g. documentation, direct access to the toolkit
creators). This creates an idealistic scenario not necessarily
present in real-world adoption [56]. Furthermore, it is diffi-
cult to identify appropriate participants for usage evaluations,
especially as toolkits propose new ways to solve a problem.
Specialized target audiences may not even exist yet [77].
Given the academic context, it is often easiest to find student
populations. Students (e.g. computer science students) are
often used as a stand-in for the target audience (e.g. develop-
ers), assuming that if students can use the toolkit then profes-
sionals might too. However, results may not always transfer
to the intended target audience. Toolkits often require exten-
sive use before becoming familiar. Thus, a premature evalua-
tion can set up the toolkit for an unfair comparison.
Reflection and Opportunities
Bringing Utility into the Picture. A central challenges of usa-
bility evaluation is its focus on toolkit usability vs. utility
[31]: while a toolkit may be usable, it may not be useful.
Walkthroughs and interviews can help here, where questions
about utility can be raised and responses explored in depth.
Selecting Tasks and Measures Carefully. While more control,
more measures and more quantifiable results seemingly pro-
vide rigour, we argue that rigour is only of value if truly rep-
resentative tasks and appropriate measures are used. Rigour
should come from a careful selection of the method, tech-
nique, and means of executing the technique. Publications
should clearly articulate why the chosen tasks and measures
support the claims made in the paper [31].
Recognizing the Consequences of Audience Choice. Toolkit
authors should critically reflect and understand the implica-
tions of their choice of audience to study. As mentioned, the
audience can be a close approximation or a starting point, but
authors need to articulate such implications and limitations.
TYPE 3: TECHNICAL PERFORMANCE
While demonstrations and usage studies evaluate what a
toolkit can do and who might use that toolkit, researchers can
evaluate the technical performance of the toolkit to find out
how well it works. From our sample of 68 toolkit papers,
about one third of the papers (18/68) include technical per-

formance studies. Technical studies are complementary to
demonstration and usage evaluations, as they convey addi-
tional information on the technical capabilities of the toolkit.
Why Analyze the Technical Performance?
The goal of studying technical performance is to benchmark,
quantify or analyze the toolkit or its components to verify or
validate the performance. Technical performance can be
measured in terms of efficiency (e.g. speed of the algorithm,
throughput of a network protocol), precision (e.g. accuracy of
an algorithm, fault tolerance), or comparison against prior
techniques. Overall, the purpose is, thus, to measure some
form of system performance. These measures show whether
it meets basic usage standards (threshold), or if there are im-
provements over the state-of-the-art. Technical benchmarks
can push the boundaries of the toolkit to show when it no
longer works as expected. Authors sometimes turn to soft-
ware engineering metrics (e.g. lines of code, number of clas-
ses) to show improvement over existing practices.

Techniques as Used in Technical Performance
The Software Engineering community has a rich set of tools
to evaluate the performance of systems [9]. Our dataset
showed that toolkit authors examine a wide variety of
benchmarks (e.g. website loading time [14], spatial resolution
[33], framerate [28,51], GPU usage [51], memory allocation
[13,51], load time [13], lines of source code [2,91], size of
binary [2]). Performance metrics should be tied to the claims
of the paper, and the needs that must be satisfied for the
toolkit to be operational or go beyond the state-of-the-art.
1. Benchmarking Against Thresholds. For certain types of
applications, systems and algorithms, there are known, tested
or desirable thresholds that serve as baseline to verify that a
system meets a commonly accepted standard of use (e.g.
accuracy, latency). For instance, 30 fps is often used for real-
time tracking systems [79]. Both KinectArms [28] and Ea-
gleSense [112] present new tracking systems benchmarked at
this 30 fps rate. Thresholds can be derived empirically, tech-
nically or from experience using the tools.
2. Benchmarking Against State-of-the-Art. Benchmarking
often looks for improvements over existing state-of-the-art
solutions. This comparison approach is often similar to algo-
rithm contributions in HCI (e.g. [110]), where a toolkit’s
capabilities are compared against well-known baselines, or
the best algorithm for that purpose. For instance, in Open-
CapSense [33], the authors compared the toolkit’s capacitive
sensing performance to the earlier CapToolKit [109]. While
not a toolkit (and thus not part of our dataset), the $1 Gesture
Recognizer [110] is an excellent example of benchmarking
against the state-of-the-art: the benchmarks showed that it
was considerably close to the state-of-the-art, yet much sim-
pler to implement (about 100 lines of code). D3 [14] com-
pared page load time to a prior toolkit and to Adobe Flash.
Page load time was deemed important given their use-case:
viewing visualizations created with the toolkit on the web.

Challenges
Technical benchmarks often complement demonstrations or
usage studies. Measuring technical benchmarks in isolation
may highlight some human aspects of using a toolkit (e.g.
frame rate, latency), but do not account for what it is like to
use the toolkit. For instance, representative examples may
still be difficult to program, even if requiring few lines of
code. Similarly, a paper may not always (explicitly) clarify
the benchmark’s importance (e.g. 30 fps in [112]). Another
challenge is that benchmark testing relies on comparisons to
an existing baseline. If performance specifications have not
already been published, authors must access state-of-the-art
systems to perform the comparisons. Given the prototypical
nature of HCI toolkits and the fast-moving targets of tech-
nology [73], many pre-existing baselines may already be
deprecated or require extensive reimplementation by the
toolkit authors. Alternatively, a baseline may not exist, as the
technical challenge may not have been solved before [82].
Reflection and Opportunities
Contextualize and State Technical Limitations. HCI toolkit
researchers often have quite different goals from commercial
toolkit developers. For example, researchers may want to
show how interaction concepts can be packaged within an
easy-to-program toolkit (e.g. its API), where the underlying –
and perhaps quite limited – infrastructure only serves as
proof of concept. Significant limitations should be stated and
contextualized to explain why they do not (or do) matter.

Risky Hypothesis Testing. Toolkit authors should openly dis-
cuss the rationale behind the tests performed and whether the
tests are a form of stress testing. Similar to some of Green-
berg and Buxton’s arguments [31], perhaps the best approach
is to actively attempt to break the toolkit’s proposed technical
claims (e.g. the ability to accurately track up to four people in
real-time [111]) to truly understand the toolkit’s technical
boundaries. One way to test these boundaries is to stress-test
the system’s scalability for a chosen metric.
Open Source and Open Access. As toolkit researchers, we
can facilitate comparison and replication by making our work
available to help future researchers (e.g. [14,64,95]). Ideally,
this goes beyond the academic publication or the toolkit
source code and documentation, but also includes the
benchmarking data so that others can run the tests (e.g. on
different computers or as baselines for future studies).
Discuss Implicit Baselines. While a toolkit paper may assume
standard metrics to determine that a system works (e.g. 24
fps, or few lines of code to accomplish a task), it may help to
mention why this metric is relevant. Thus, less familiar read-
ers can better understand the performance implications.
TYPE 4: HEURISTICS
Heuristics in HCI are typically associated with Nielsen et
al.’s (e.g. [72,81]) discount method to informally assess inter-
face usability. Given the challenges of toolkit evaluation,
toolkit researchers have devised toolkit-centric heuristics
(guidelines) to assess the end-result of a toolkit [10,82]. The

toolkit is then inspected against these heuristics, which in
turn serves to inform strengths, weaknesses, and reflection of
the toolkit’s potential value. The heuristics have been ex-
tracted from tried and accepted approaches to toolkit design
and have been used by others (e.g. Blackwell and Green’s
heuristics [10] as used by [13,36], Olsen’s heuristics [82] as
used by [43,58,70,71,74,96]). In our sample, heuristics al-
ways complemented other methods.
Why Use Heuristics?
Heuristics are used as a discount method that does not require
human participants to gather insight, while still exposing
aspects of utility. Olsen’s ideas of expressive leverage and
expressive match [82] resonate with Greenberg’s view of
toolkits as a language that facilitates creation [73], or Myers’
themes of successful systems helping where needed and cre-
ating paths of least resistance [73]. Heuristics are based on
tried success [72] or theories (e.g. cognitive dimensions [8]).
Blackwell and Green’s Cognitive Dimensions of Notation
(CDN) [8] was initially offered as a set of discussion points
that designers could also use as heuristics to verify system
usability. Their primary goal was to create a vocabulary for
experts to make early judgements when designing, and to
articulate decisions later. The authors describe it as a synthe-
sis of several sources that can partially address elements of
the interface design process. CDN also included a question-
naire approach [11] to structure user feedback sessions.

Olsen’s heuristics [82] aimed to bring the focus of toolkit
evaluation back to what he saw as the value of UI systems
research, which corresponds to our aforementioned reasons
why HCI researchers build toolkits. Olsen provided termi-
nology and means to support common claims made in toolkit
papers. Interestingly, Olsen states that given a set of claims,
one can demonstrate how the toolkit supports them, which
may explain why our data shows prevalent combinations of
Type 4 evaluations together with Type 1 (demonstrations).

Following a comprehensive list of heuristics can help identify
areas not addressed by the toolkit. Some heuristics might be
more crucial (e.g. problem not previously solved [82]). Con-
versely, some may not be relevant for the proposed toolkit
(e.g. secondary notations [10]). Heuristics can and should be
omitted when appropriate [72].
Evaluation Techniques for Heuristics
We identified three ways to carry out a heuristic evaluation:
checklists, discussion, and as a basis for usage studies.
1. Checklists. The checklist approach consists of selecting a
heuristic evaluation approach and going through individual
heuristics one at a time. In doing so, authors can reflect on
whether the toolkit satisfies the heuristic or not, and the ex-
tent of meeting it. For instance, Hartmann et al. [36] followed
Blackwell and Green’s CDN through a questionnaire [11]. In
evaluating each item, they found that many the limitations of
the system were due to the inability to show many sensor
visualizations at once. Similarly, Meskens et al. [70] follow

Olsen’s heuristics to determine which elements of the inter-
face are lacking (e.g. ability to generalize and reuse).
2. Discussion. In contrast to the checklist approach, Olsen’s
heuristics [82] are also used as reflection points in the discus-
sion of a toolkit paper. This reflection allows the authors to
better understand the limitations and whether there are issues
in the toolkit that are not addressed. Both Gummy [71] and
WatchConnect [43] are examples of this approach, where
authors reflect on shortcomings (and ways to address them)
as well as compare their toolkits to the state of the art.
3. Basing Usage Studies on Heuristics. Heuristics can help
determine what is useful to evaluate. XDKinect [74] tailored
their usage study to some of Olsen’s guidelines [82], such as
reducing solution viscosity and ease of combination.
Challenges
A danger of heuristic evaluations is falling into self-fulfilling
prophecies, where authors stretch definitions of the heuristics
to justify their claims. Alternatively, authors might choose to
only focus on (1) heuristics that their toolkit addresses or (2)
how the toolkit addresses them without acknowledging the
negative aspects or compromises (e.g. increasing flexibility at
the expense of expressive match). Sometimes the heuristics
are not relevant to a particular toolkit. For example, CDN
[10] covers a breadth of applications, where some heuristics
only apply to one group (e.g. visual programming environ-
ments). Omitting heuristics without clear rationale could lead
readers to believe that the authors are cherry picking heuris-
tics. Heuristic evaluations are often carried out by the au-
thors, who may have an implicit bias. While heuristic evalua-
tion in HCI suggests the added value of external evaluators
[72,81], it proves difficult for toolkits given their complexity.
None of the surveyed papers used external evaluators.
Reflection and Opportunities
Using Heuristics as Design Guidelines. Heuristics can serve
complementary purposes: they can inform design as well as
help evaluate designs. Thus, toolkit authors can conceptually
consider how to support aspects of creation early on through
best practices (e.g. API practices [99]). As examples, the
Intelligibility Toolkit [58] and HapticTouch [55] both discuss
heuristics inspiring some of their design goals.

Using Heuristics to Inform Techniques from Prior Types.
Given the vocabulary provided by heuristics, authors can
consider how demonstrations or usage studies might stem
from the heuristics themselves. For example, Olsen [82] sug-
gests that one way to experimentally evaluate expressive
match is to perform a “design flaw test”, where participants
are asked to remedy a flaw using a regular design with “good
expressive match” (e.g. colour picker) and a deficient design
with “bad expressive match” (e.g. hex colour codes).

Transparency. Toolkit authors can disambiguate cherry pick-
ing versus ignoring irrelevant heuristics by articulating why a
heuristic is or is not considered. This will increase transpar-
ency and possibly expose gaps in the evaluation.

DISCUSSION
Our meta-review reveals 4 strategies to evaluate toolkits: (1)
demonstrations (what a toolkit can do), (2) usage (who can
use the toolkit and how), (3) technical evaluations (how well
a toolkit performs), and (4) heuristics (to what extent the
toolkit meets standard guidelines). We now offer several
opinions, formed from own toolkit building experiences, the
meta-review analysis and other toolkit researchers.

Rethinking Evaluation
Rather than considering some methods as better than others,
we believe that it is more important to use methods that best
match the claims of the toolkit paper, and what that evalua-
tion method might yield. One way to determine this might be
for authors to ask themselves: if the evaluation technique
were to be removed, what is the impact to the paper? In an-
swering that question, authors might realize the essential
methods, and which ones are secondary or even unnecessary.

Evaluation by Demonstration?
One central observation in our review is that demonstrations
are by far the most common way to communicate the func-
tionality of the toolkit. Demonstrations vary in complexity,
ranging from small examples to complex interaction tech-
niques and systems. 19 toolkit papers used demonstration as
the only way to communicate or evaluate the toolkit’s capa-
bilities. Novel and replicated examples are quite common
due to their easy implementation and description. However,
further analysis showed that it is rare to find more systematic
explorations of the capabilities of toolkits through case stud-
ies concurrent to the time of publication, or design space ex-
plorations. Moreover, many toolkit papers combine examples
with code snippets and how-to scenarios to help the reader
understand what the toolkit supports. While demonstrations
are often not considered a formal evaluation, they show evi-
dence through “research by design” [39] and are highly ef-
fective in communicating the principles, concepts and under-
lying ideas of the toolkit. In fact, using the toolkit to create
prototypes can lead to refinements in the toolkit itself, as was
done in SATIN [41]. When linked back to the five goals of
toolkit research, demonstrations provide the most complete
and compelling evidence for achieving the goals of designing
the new toolkit. The wide adoption of evaluation by demon-
stration indicates that such well explored examples can be a
measure of success for the underlying concepts and ideas of a
specific toolkit implementation.

Usability Studies (Still) Considered Harmful Some of the Time
Half of all toolkit papers in our sample conducted usage stud-
ies. These include compelling examples examining how peo-
ple work with a toolkit; how a toolkit is used and appropriat-
ed in a realistic environment; or how toolkits enable creativi-
ty and exploration. Although usage studies play a fundamen-
tal role in establishing who can use a toolkit, our analysis
shows that many authors still fall into the ‘usability trap’
[82]. Despite Greenberg and Buxton’s warning that usability
studies can be ‘harmful’ if not applied to the right problem
[31], many papers in our sample performed usability studies
to evaluate complex toolkits. Such studies may employ artifi-

cial tasks, small sample sizes, and non-representative user
groups to evaluate a small subset of paths offered by the
toolkit. While still yielding results, these are limited to the
specific task, and rarely generalize to the entire toolkit capa-
bilities, development paths, broader audience that would use
the toolkit, and the context around toolkit learning and use.

Echoing prior work discussing that usability studies are not
always required for toolkit research [45,82], we believe nar-
row usability studies as currently done by most toolkit au-
thors at best play only a minor role establishing or evaluating
the novelty or significance of the toolkit and its underlying
ideas. If done narrowly, they should at least be combined
with other techniques: all but one paper in our sample also
included demonstrations or technical evaluations. Even so,
we consider this a widespread application of a weak mixed
method approach, where researchers may make – perhaps
unwarranted – generalized usability claims across the entire
toolkit. Careless usability evaluations can be costly, as they
may evaluate the wrong possible futures and lead to false
conclusions [92]. Usability studies can evaluate parts of the
toolkit, but they must be designed and conducted with care.

Successful Evaluation versus Successful Toolkit
In our dataset, we observed a diverse range of toolkits that
address various sub-fields within the HCI community, where
there is no indication that the success of the toolkit was nec-
essarily tied to the success of the evaluation. Some of these
toolkits have had enormous impact within the research com-
munity. For example, the Context Toolkit [91] has had a
transformative effect on research within the space of context
awareness, as evident from the 1326 citations. Other toolkits
have moved on to become successful outside of the research
community. For instance, D3 [14] has been widely adopted
for web-based interactive visualizations. Their paper already
suggested that the evaluation may not be indicative of suc-
cess: “while we can quantify performance, accessibility is far
more difficult to measure. The true test of D3’s design will be
in user adoption” [14]. Success can also lie in enabling new
research agendas. The Proximity Toolkit [64] operationalized
proxemic interaction concepts into concrete building blocks
and techniques. Many downloaded the toolkit for research or
to learn how to build proxemic-aware applications.

The Need for HCI Infrastructure Research
We started this paper by arguing that toolkits have profound-
ly influenced HCI research and will continue to do so in the
future. Going back to the pioneering work of Engelbart [26],
Sutherland [100], or Weiser [105], we observe how invention
through building interactive systems, architectures and
frameworks enabled them to explore completely new spaces.
Since then, there has been an enormous growth in toolkits
exploring technical realizations of concepts, techniques and
systems in many emerging areas within the field (e.g. physi-
cal computing, tangible interfaces, augmented reality,
ubicomp) and demonstrating new possible futures.

HCI systems and toolkit research serves to further develop
and realize high-level interaction concepts (e.g. proxemic

interactions [64]). Consequently, toolkits make these concep-
tual ideas very concrete, and enable further conversations and
follow-up research. For instance, the Context Toolkit [91]
was a very successful toolkit that moved research in context-
aware computing [97] forward by enabling developers to
rapidly prototype context-aware applications. The toolkit
provided a component-based architecture separating context
inference from the applications that used context information
and allowing developers to respond to context changes in an
event-driven way. By making these ideas (and their realiza-
tion in software) very concrete, the Context Toolkit also
fueled criticism from researchers who argued that a computa-
tional representation of context, as encapsulated in the
toolkit, did not capture the complexity of how people behave
in the real world. Greenberg [29] argued that many contextu-
al situations are not stable, discernable, or predictable, and
argued for context-aware applications to explain the inferred
context and how they respond to it (what Bellotti & Edwards
refer to as “intelligibility” [7]). Interestingly, these discus-
sions led to development and integration of these ideas in
future systems and toolkits, such as the Situations framework
[19] and the Intelligibility Toolkit [58].

Limitations
We make no pretense that our overview of evaluation strate-
gies for toolkits is complete. First, to ensure that our meta-
review focused on forms of evaluation that are relevant to
currently accepted standards, we limited our sample to re-
cently published toolkit papers. Thus, we may have missed
forms of evaluation used in past toolkit research. Second,
many research projects make multiple contributions not cap-
tured in a single paper. Our analysis only reflects what is
described in that single paper. For some of the toolkits in our
meta-review, additional evaluations were described in later
publications (e.g. Prefab [21]). Finally, the authors of this
paper have all built and designed toolkits. While our reflec-
tion of toolkit evaluation strategies is likely strengthened by
our first-hand experience, it may also have introduced bias.

CONCLUSIONS
Research toolkits have fundamentally influenced and shaped
the way interactive technology is built, and will continue to
do so. Despite the impact and success of toolkits, evaluating
them remains a challenge. This paper is a first attempt at clar-
ifying what evaluation methods are used, when they are ap-
propriate and how they are performed. We derived four eval-
uation types and associated techniques for HCI toolkits based
on 68 toolkit papers. We hope our categorization and reflec-
tion helps strengthen methods for toolkit research and move
technical HCI research forward. Data and other materials can
be found at: https://github.com/davidledo/toolkit-evaluation.

ACKNOWLEDGEMENTS
We thank our reviewers and Michael Nebeling for their de-
tailed comments that helped clarify our arguments, and the
HCI.Tools workshop participants [66] for ongoing discus-
sions on the value of toolkits for HCI research.

https://github.com/davidledo/toolkit-evaluation

REFERENCES
1. Georg Apitz and François Guimbretière. 2004. CrossY:

a crossing-based drawing application. In Proceedings of
the 17th annual ACM symposium on User interface
software and technology (UIST ‘04). ACM, New York,
NY, USA, 3-12.
http://dx.doi.org/10.1145/1029632.1029635

2. Caroline Appert and Michel Beaudouin-Lafon. 2006.
SwingStates: adding state machines to the swing toolkit.
In Proceedings of the 19th annual ACM symposium on
User interface software and technology (UIST ‘06).
ACM, New York, NY, USA, 319-322.
https://doi.org/10.1145/1166253.1166302

3. Sriram Karthik Badam and Niklas Elmqvist. 2014. Pol-
yChrome: A Cross-Device Framework for Collaborative
Web Visualization. In Proceedings of the Ninth ACM In-
ternational Conference on Interactive Tabletops and
Surfaces (ITS ‘14). ACM, New York, NY, USA, 109-
118. http://dx.doi.org/10.1145/2669485.2669518

4. Rafael Ballagas, Meredith Ringel, Maureen Stone, and
Jan Borchers. 2003. iStuff: a physical user interface
toolkit for ubiquitous computing environments.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ‘03). ACM, New
York, NY, USA, 537-544.
http://dx.doi.org/10.1145/642611.642705

5. Till Ballendat, Nicolai Marquardt, and Saul Greenberg.
2010. Proxemic interaction: designing for a proximity
and orientation-aware environment. In ACM Interna-
tional Conference on Interactive Tabletops and Surfac-
es (ITS ‘10). ACM, New York, NY, USA, 121-130.
https://doi.org/10.1145/1936652.1936676

6. Ben Bederson, Jesse Grosjean and Jon Meyer. 2004.
Toolkit design for interactive structured graphics. IEEE
Transactions on Software Engineering, 30(8). IEEE
535-546. 10.1109/TSE.2004.44

7. Victoria Bellotti and Keith Edwards. 2001. Intelligibility
and accountability: human considerations in context-
aware systems. Hum.-Comput. Interact. 16, 2 (Decem-
ber 2001), 193-212.
http://dx.doi.org/10.1207/S15327051HCI16234_05

8. Michael S. Bernstein, Mark S. Ackerman, Ed H. Chi,
and Robert C. Miller. 2011. The trouble with social
computing systems research. In CHI ‘11 Extended Ab-
stracts on Human Factors in Computing Systems (CHI
EA ‘11). ACM, New York, NY, USA, 389-398.
https://doi.org/10.1145/1979742.1979618

9. Stephen M. Blackburn, Robin Garner, Chris Hoffmann,
Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur,
Amer Diwan, Daniel Feinberg, Daniel Frampton, Samu-
el Z. Guyer, Martin Hirzel, Antony Hosking, Maria
Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo

benchmarks: Java benchmarking development and anal-
ysis. In Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications (OOPSLA ‘06). ACM,
New York, NY, USA, 169-190. DOI:
https://doi.org/10.1145/1167473.1167488

10. Alan Blackwell, Carol Britton, Blackwell, A. Cox,
Thomas Green, Corin Gurr, Gada Kadoda, M.S. Kutar et
al. 2001. Cognitive dimensions of notations: Design
tools for cognitive technology. In Cognitive technology:
instruments of mind Springer, Berlin, Heidelberg. 325-
341.
https://doi.org/10.1007/3-540-44617-6_31

11. Alan Blackwell and Thomas Green. 2000. A Cognitive
Dimensions questionnaire optimised for users.
In proceedings of the twelfth annual meeting of the psy-
chology of programming interest group. 137-152.

12. Florian Block, Michael Haller, Hans Gellersen, Carl
Gutwin, and Mark Billinghurst. 2008. VoodooSketch:
extending interactive surfaces with adaptable interface
palettes. In Proceedings of the 2nd international confer-
ence on Tangible and embedded interaction (TEI ‘08).
ACM, New York, NY, USA, 55-58.
http://dx.doi.org/10.1145/1347390.1347404

13. Michael Bostock and Jeffrey Heer. 2009. Protovis: A
Graphical Toolkit for Visualization. In IEEE Transac-
tions on Visualization and Computer Graphics, vol. 15,
no. 6. IEEE. 1121-1128.
https://doi.org/10.1109/TVCG.2009.174

14. Michael Bostock, Vadim Ogievetsky and Jeffrey Heer.
2011. D³ Data-Driven Documents. In IEEE Transactions
on Visualization and Computer Graphics, vol. 17, no.
12. IEEE. 2301-2309.
https://doi.org/10.1109/TVCG.2011.185

15. Jorge Cardoso and Rui José. 2012. PuReWidgets: a pro-
gramming toolkit for interactive public display applica-
tions. In Proceedings of the 4th ACM SIGCHI symposi-
um on Engineering interactive computing systems (EICS
‘12). ACM, New York, NY, USA, 51-60.
https://doi.org/10.1145/2305484.2305496

16. Kathy Charmaz. 2014. Constructing grounded theory.
Sage.

17. Pei-Yu (Peggy) Chi and Yang Li. 2015. Weave: Script-
ing Cross-Device Wearable Interaction. In Proceedings
of the 33rd Annual ACM Conference on Human Factors
in Computing Systems (CHI ‘15). ACM, New York, NY,
USA, 3923-3932.
https://doi.org/10.1145/2702123.2702451

18. Alan Cooper. 2004. The inmates are running the asy-
lum: Why high-tech products drive us crazy and how to
restore the sanity. Sams Indianapolis.

19. Anind K. Dey and Alan Newberger. 2009. Support for
context-aware intelligibility and control. In Proceedings

http://dx.doi.org/10.1145/1029632.1029635
https://doi.org/10.1145/1166253.1166302
http://dx.doi.org/10.1145/2669485.2669518
http://dx.doi.org/10.1145/642611.642705
https://doi.org/10.1145/1936652.1936676
http://dx.doi.org/10.1207/S15327051HCI16234_05
https://www.google.com/url?q=https%3A%2F%2Fdoi.org%2F10.1145%2F1979742.1979618&sa=D&sntz=1&usg=AFQjCNHE7QFlwVupihHTO0Y59V9e5-PNEw
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1007/3-540-44617-6_31
http://dx.doi.org/10.1145/1347390.1347404
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/2305484.2305496
https://doi.org/10.1145/2702123.2702451

of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI ‘09). ACM, New York, NY, USA,
859-868. https://doi.org/10.1145/1518701.1518832

20. Morgan Dixon and James Fogarty. 2010. Prefab: im-
plementing advanced behaviors using pixel-based re-
verse engineering of interface structure. In Proceedings
of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI ‘10). ACM, New York, NY, USA,
1525-1534. https://doi.org/10.1145/1753326.1753554

21. Morgan Dixon, Alexander Nied, and James Fogarty.
2014. Prefab layers and prefab annotations: extensible
pixel-based interpretation of graphical interfaces.
In Proceedings of the 27th annual ACM symposium on
User interface software and technology (UIST ‘14).
ACM, New York, NY, USA, 221-230.
https://doi.org/10.1145/2642918.2647412

22. Pierre Dragicevic and Jean-Daniel Fekete. 2004. Support
for input adaptability in the ICON toolkit.
In Proceedings of the 6th international conference on
Multimodal interfaces (ICMI ‘04). ACM, New York,
NY, USA, 212-219.
http://dx.doi.org/10.1145/1027933.1027969

23. Brian de Alwis, Carl Gutwin, and Saul Greenberg. 2009.
GT/SD: performance and simplicity in a groupware
toolkit. In Proceedings of the 1st ACM SIGCHI sympo-
sium on Engineering interactive computing sys-
tems (EICS ‘09). ACM, New York, NY, USA, 265-274.
10.1145/1570433.1570483
http://doi.acm.org/10.1145/1570433.1570483

24. Joseph Dumas and Janice Redish. 1999. A practical
guide to usability testing. Intellect books.

25. W. Keith Edwards, Mark W. Newman, and Erika Sheh-
an Poole. 2010. The infrastructure problem in HCI.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ‘10). ACM, New
York, NY, USA, 423-432.
https://doi.org/10.1145/1753326.1753390

26. Douglas C Engelbart (1968). The mother of all demos.
Presented at ACM/IEEE - Computer Society’s Fall Joint
Computer Conference. San Francisco

27. James Fogarty. Code and Contribution in Interactive
Systems Research. In workshop on HCI.Tools at
CHI’2017.

28. Aaron M. Genest, Carl Gutwin, Anthony Tang, Michael
Kalyn, and Zenja Ivkovic. 2013. KinectArms: a toolkit
for capturing and displaying arm embodiments in dis-
tributed tabletop groupware. In Proceedings of the 2013
conference on Computer supported cooperative
work (CSCW ‘13). ACM, New York, NY, USA, 157-
166. https://doi.org/10.1145/2441776.2441796

29. Saul Greenberg. 2001. Context as a dynamic con-
struct. Hum.-Comput. Interact. 16, 2 (December 2001),

257-268.
http://dx.doi.org/10.1207/S15327051HCI16234_09

30. Saul Greenberg. 2007. Toolkits and interface creativi-
ty. Multimedia Tools and Applications, 32(2), Springer,
139-159.
https://doi.org/10.1007/s11042-006-0062-y

31. Saul Greenberg and Bill Buxton. 2008. Usability evalua-
tion considered harmful (some of the time).
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ‘08). ACM, New
York, NY, USA, 111-120.
https://doi.org/10.1145/1357054.1357074

32. Saul Greenberg and Chester Fitchett. 2001. Phidgets:
easy development of physical interfaces through physi-
cal widgets. In Proceedings of the 14th annual ACM
symposium on User interface software and technolo-
gy (UIST ‘01). ACM, New York, NY, USA, 209-218.
http://dx.doi.org/10.1145/502348.502388

33. Tobias Grosse-Puppendahl, Yannick Berghoefer, An-
dreas Braun, Raphael Wimmer and Arjan Kuijper. 2013.
OpenCapSense: A rapid prototyping toolkit for perva-
sive interaction using capacitive sensing. In Proc. IEEE
International Conference on Pervasive Computing and
Communications (PerCom). IEEE. San Diego, CA,
USA, 152-159.
 10.1109/PerCom.2013.6526726

34. Tovi Grossman and Ravin Balakrishnan. 2005. The
bubble cursor: enhancing target acquisition by dynamic
resizing of the cursor’s activation area. In Proceedings of
the SIGCHI Conference on Human Factors in Compu-
ting Systems (CHI ‘05). ACM, New York, NY, USA,
281-290. http://dx.doi.org/10.1145/1054972.1055012

35. Thomas E. Hansen, Juan Pablo Hourcade, Mathieu Vir-
bel, Sharath Patali, and Tiago Serra. 2009. PyMT: a
post-WIMP multi-touch user interface toolkit.
In Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces (ITS ‘09). ACM,
New York, NY, USA, 17-24.
https://doi.org/10.1145/1731903.1731907

36. Björn Hartmann, Leith Abdulla, Manas Mittal, and Scott
R. Klemmer. 2007. Authoring sensor-based interactions
by demonstration with direct manipulation and pattern
recognition. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ‘07).
ACM, New York, NY, USA, 145-154.
https://doi.org/10.1145/1240624.1240646

37. Björn Hartmann, Scott R. Klemmer, Michael Bernstein,
Leith Abdulla, Brandon Burr, Avi Robinson-Mosher,
and Jennifer Gee. 2006. Reflective physical prototyping
through integrated design, test, and analysis.
In Proceedings of the 19th annual ACM symposium on
User interface software and technology (UIST ‘06).
ACM, New York, NY, USA, 299-308.
https://doi.org/10.1145/1166253.1166300

https://doi.org/10.1145/1518701.1518832
https://doi.org/10.1145/1753326.1753554
https://doi.org/10.1145/2642918.2647412
http://dx.doi.org/10.1145/1027933.1027969
http://doi.acm.org/10.1145/1570433.1570483
https://doi.org/10.1145/1753326.1753390
https://doi.org/10.1145/2441776.2441796
http://dx.doi.org/10.1207/S15327051HCI16234_09
https://doi.org/10.1007/s11042-006-0062-y
https://doi.org/10.1145/1357054.1357074
http://dx.doi.org/10.1145/502348.502388
http://dx.doi.org/10.1145/1054972.1055012
https://doi.org/10.1145/1731903.1731907
https://doi.org/10.1145/1240624.1240646
https://doi.org/10.1145/1166253.1166300

38. Jeffrey Heer, Stuart K. Card, and James A. Landay.
2005. prefuse: a toolkit for interactive information visu-
alization. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ‘05). ACM,
New York, NY, USA, 421-430.
http://dx.doi.org/10.1145/1054972.1055031

39. Alan R. Hevner, Salvatore T. March, Jinsoo Park, and
Sudha Ram. 2004. Design science in information sys-
tems research. MIS Q. 28, 1 (March 2004), 75-105.

40. Jason Hill and Carl Gutwin. 2004. The MAUI toolkit:
Groupware widgets for group awareness. Computing
Supported Cooperative Work, 13, Springer 539-571.
https://doi.org/10.1007/s10606-004-5063-7

41. Jason I. Hong and James A. Landay. 2000. SATIN: a
toolkit for informal ink-based applications.
In Proceedings of the 13th annual ACM symposium on
User interface software and technology (UIST ‘00).
ACM, New York, NY, USA, 63-72.
http://dx.doi.org/10.1145/354401.354412

42. Steven Houben, Connie Golsteijn, Sarah Gallacher, Rose
Johnson, Saskia Bakker, Nicolai Marquardt, Licia Cap-
ra, and Yvonne Rogers. 2016. Physikit: Data Engage-
ment Through Physical Ambient Visualizations in the
Home. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (CHI ‘16). ACM,
New York, NY, USA, 1608-1619.
https://doi.org/10.1145/2858036.2858059

43. Steven Houben and Nicolai Marquardt. 2015. Watch-
Connect: A Toolkit for Prototyping Smartwatch-Centric
Cross-Device Applications. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Compu-
ting Systems (CHI ‘15). ACM, New York, NY, USA,
1247-1256. https://doi.org/10.1145/2702123.2702215

44. Steven Houben, Nicolai Marquardt, Jo Vermeulen,
Clemens Klokmose, Johannes Schöning, Harald Reiter-
er, and Christian Holz. 2017. Opportunities and chal-
lenges for cross-device interactions in the
wild. interactions 24, 5 (August 2017), 58-63.
https://doi.org/10.1145/3121348

45. Scott E. Hudson, and Jennifer Mankoff. 2014. Concepts,
Values, and Methods for Technical Human–Computer
Interaction Research. In Ways of Knowing in HCI,
Springer New York, NY, USA, 69-93.
https://doi.org/10.1007/978-1-4939-0378-8_4

46. Scott E. Hudson, Jennifer Mankoff, and Ian Smith. 2005.
Extensible input handling in the subArctic toolkit.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ‘05). ACM, New
York, NY, USA, 381-390.
http://dx.doi.org/10.1145/1054972.1055025

47. Stéphane Huot, Cédric Dumas, Pierre Dragicevic, Jean-
Daniel Fekete, and Gérard Hégron. 2004. The MaggLite
post-WIMP toolkit: draw it, connect it and run it.
In Proceedings of the 17th annual ACM symposium on

User interface software and technology (UIST ‘04).
ACM, New York, NY, USA, 257-266.
http://dx.doi.org/10.1145/1029632.1029677

48. Martin Kaltenbrunner and Ross Bencina. 2007. reac-
TIVision: a computer-vision framework for table-based
tangible interaction. In Proceedings of the 1st interna-
tional conference on Tangible and embedded interac-
tion (TEI ‘07). ACM, New York, NY, USA, 69-74.
http://dx.doi.org/10.1145/1226969.1226983

49. Jun Kato, Daisuke Sakamoto, and Takeo Igarashi. 2012.
Phybots: a toolkit for making robotic things.
In Proceedings of the Designing Interactive Systems
Conference (DIS ‘12). ACM, New York, NY, USA,
248-257. https://doi.org/10.1145/2317956.2317996

50. Bonifaz Kaufmann and Leah Buechley. 2010. Amarino:
a toolkit for the rapid prototyping of mobile ubiquitous
computing. In Proceedings of the 12th international
conference on Human computer interaction with mobile
devices and services (MobileHCI ‘10). ACM, New
York, NY, USA, 291-298.
https://doi.org/10.1145/1851600.1851652

51. Travis Kirton, Sebastien Boring, Dominikus Baur, Lind-
say MacDonald, and Sheelagh Carpendale. 2013. C4: a
creative-coding API for media, interaction and anima-
tion. In Proceedings of the 7th International Conference
on Tangible, Embedded and Embodied Interaction (TEI
‘13). ACM, New York, NY, USA, 279-286.
http://dx.doi.org/10.1145/2460625.2460672

52. Scott R. Klemmer, Jack Li, James Lin, and James A.
Landay. 2004. Papier-Mâché: toolkit support for tangi-
ble input. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ‘04). ACM,
New York, NY, USA, 399-406.
http://dx.doi.org/10.1145/985692.985743

53. Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hoch-
heiser. 2017. Research methods in human-computer in-
teraction. Morgan Kaufmann.

54. David Ledo, Fraser Anderson, Ryan Schmidt, Lora Oeh-
lberg, Saul Greenberg, and Tovi Grossman. 2017. Pine-
al: Bringing Passive Objects to Life with Embedded
Mobile Devices. In Proceedings of the 2017 CHI Con-
ference on Human Factors in Computing Systems (CHI
‘17). ACM, New York, NY, USA, 2583-2593.
https://doi.org/10.1145/3025453.3025652

55. David Ledo, Miguel A. Nacenta, Nicolai Marquardt,
Sebastian Boring, and Saul Greenberg. 2012. The Hap-
ticTouch toolkit: enabling exploration of haptic interac-
tions. In Proceedings of the Sixth International Confer-
ence on Tangible, Embedded and Embodied Interac-
tion (TEI ‘12), Stephen N. Spencer (Ed.). ACM, New
York, NY, USA, 115-122.
https://doi.org/10.1145/2148131.2148157

http://dx.doi.org/10.1145/1054972.1055031
https://doi.org/10.1007/s10606-004-5063-7
http://dx.doi.org/10.1145/354401.354412
https://doi.org/10.1145/2858036.2858059
https://doi.org/10.1145/2702123.2702215
https://doi.org/10.1145/3121348
https://doi.org/10.1007/978-1-4939-0378-8_4
http://dx.doi.org/10.1145/1054972.1055025
http://dx.doi.org/10.1145/1029632.1029677
https://doi.org/10.1145/2317956.2317996
https://doi.org/10.1145/1851600.1851652
http://dx.doi.org/10.1145/2460625.2460672
http://dx.doi.org/10.1145/985692.985743
https://doi.org/10.1145/3025453.3025652
https://doi.org/10.1145/2148131.2148157

56. David Ledo, Lora Oehlberg and Saul Greenberg. 2017.
The Toolkit-Audience Challenge. In Workshop on
HCI.Tools at CHI 2017.

57. Johnny C. Lee, Daniel Avrahami, Scott E. Hudson, Jodi
Forlizzi, Paul H. Dietz, and Darren Leigh. 2004. The
calder toolkit: wired and wireless components for rapid-
ly prototyping interactive devices. In Proceedings of the
5th conference on Designing interactive systems: pro-
cesses, practices, methods, and techniques (DIS ‘04).
ACM, New York, NY, USA, 167-175.
http://dx.doi.org/10.1145/1013115.1013139

58. Brian Y. Lim and Anind K. Dey. 2010. Toolkit to sup-
port intelligibility in context-aware applications.
In Proceedings of the 12th ACM international confer-
ence on Ubiquitous computing (UbiComp ‘10). ACM,
New York, NY, USA, 13-22.
https://doi.org/10.1145/1864349.1864353

59. James Lin and James A. Landay. 2008. Employing pat-
terns and layers for early-stage design and prototyping of
cross-device user interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ‘08). ACM, New York, NY, USA, 1313-
1322. https://doi.org/10.1145/1357054.1357260

60. James Lin, Mark W. Newman, Jason I. Hong, and James
A. Landay. 2000. DENIM: finding a tighter fit between
tools and practice for Web site design. In Proceedings of
the SIGCHI conference on Human Factors in Compu-
ting Systems (CHI ‘00). ACM, New York, NY, USA,
510-517. http://dx.doi.org/10.1145/332040.332486

61. Blair MacIntyre, Maribeth Gandy, Steven Dow, and Jay
David Bolter. 2004. DART: a toolkit for rapid design
exploration of augmented reality experiences.
In Proceedings of the 17th annual ACM symposium on
User interface software and technology (UIST ‘04).
ACM, New York, NY, USA, 197-206.
http://dx.doi.org/10.1145/1029632.1029669

62. Jennifer Mankoff, Scott E. Hudson, and Gregory D.
Abowd. 2000. Providing integrated toolkit-level support
for ambiguity in recognition-based interfaces.
In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems (CHI ‘00). ACM, New
York, NY, USA, 368-375.
http://dx.doi.org/10.1145/332040.332459

63. Javier Marco, Eva Cerezo, and Sandra Baldassarri. 2012.
ToyVision: a toolkit for prototyping tabletop tangible
games. In Proceedings of the 4th ACM SIGCHI sympo-
sium on Engineering interactive computing sys-
tems (EICS ‘12). ACM, New York, NY, USA, 71-80.
https://doi.org/10.1145/2305484.2305498

64. Nicolai Marquardt, Robert Diaz-Marino, Sebastian Bor-
ing, and Saul Greenberg. 2011. The proximity toolkit:
prototyping proxemic interactions in ubiquitous compu-
ting ecologies. In Proceedings of the 24th annual ACM
symposium on User interface software and technolo-

gy (UIST ‘11). ACM, New York, NY, USA, 315-326.
https://doi.org/10.1145/2047196.2047238

65. Nicolai Marquardt and Saul Greenberg. 2007. Distribut-
ed physical interfaces with shared phidgets.
In Proceedings of the 1st international conference on
Tangible and embedded interaction (TEI ‘07). ACM,
New York, NY, USA, 13-20.
http://dx.doi.org/10.1145/1226969.1226973

66. Nicolai Marquardt, Steven Houben, Michel Beaudouin-
Lafon, and Andrew D. Wilson. 2017. HCITools: Strate-
gies and Best Practices for Designing, Evaluating and
Sharing Technical HCI Toolkits. In Proceedings of the
2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems (CHI EA ‘17). ACM,
New York, NY, USA, 624-627.
https://doi.org/10.1145/3027063.3027073

67. Nicolai Marquardt, Johannes Kiemer, David Ledo, Se-
bastian Boring, and Saul Greenberg. 2011. Designing
user-, hand-, and handpart-aware tabletop interactions
with the TouchID toolkit. In Proceedings of the ACM In-
ternational Conference on Interactive Tabletops and
Surfaces (ITS ‘11). ACM, New York, NY, USA, 21-30.
https://doi.org/10.1145/2076354.2076358

68. Tara Matthews, Anind K. Dey, Jennifer Mankoff, Scott
Carter, and Tye Rattenbury. 2004. A toolkit for manag-
ing user attention in peripheral displays. In Proceedings
of the 17th annual ACM symposium on User interface
software and technology (UIST ‘04). ACM, New York,
NY, USA, 247-256.
http://dx.doi.org/10.1145/1029632.1029676

69. Joseph McGrath. 1995. Methodology matters: Doing
research in the behavioral and social sciences.
In Readings in Human-Computer Interaction: Toward
the Year 2000 (2nd ed). 152-169.

70. Jan Meskens, Kris Luyten, and Karin Coninx. 2010. D-
Macs: building multi-device user interfaces by demon-
strating, sharing and replaying design actions.
In Proceedings of the 23nd annual ACM symposium on
User interface software and technology (UIST ‘10).
ACM, New York, NY, USA, 129-138.
https://doi.org/10.1145/1866029.1866051

71. Jan Meskens, Jo Vermeulen, Kris Luyten, and Karin
Coninx. 2008. Gummy for multi-platform user interface
designs: shape me, multiply me, fix me, use me.
In Proceedings of the working conference on Advanced
visual interfaces (AVI ‘08). ACM, New York, NY,
USA, 233-240.
https://doi.org/10.1145/1385569.1385607

72. Rolf Molich and Jakob Nielsen. 1990. Improving a hu-
man-computer dialogue. Commun. ACM 33, 3 (March
1990), 338-348. 10.1145/77481.77486
http://doi.acm.org/10.1145/77481.77486

73. Brad Myers, Scott E. Hudson, and Randy Pausch. 2000.
Past, present, and future of user interface software

http://dx.doi.org/10.1145/1013115.1013139
https://doi.org/10.1145/1864349.1864353
https://doi.org/10.1145/1357054.1357260
http://dx.doi.org/10.1145/332040.332486
http://dx.doi.org/10.1145/1029632.1029669
http://dx.doi.org/10.1145/332040.332459
https://doi.org/10.1145/2305484.2305498
https://doi.org/10.1145/2047196.2047238
http://dx.doi.org/10.1145/1226969.1226973
https://doi.org/10.1145/3027063.3027073
https://doi.org/10.1145/2076354.2076358
http://dx.doi.org/10.1145/1029632.1029676
https://doi.org/10.1145/1866029.1866051
https://doi.org/10.1145/1385569.1385607
http://doi.acm.org/10.1145/77481.77486

tools. ACM Trans. Comput.-Hum. Interact. 7, 1 (March
2000), 3-28. http://dx.doi.org/10.1145/344949.344959

74. Michael Nebeling, Elena Teunissen, Maria Husmann,
and Moira C. Norrie. 2014. XDKinect: development
framework for cross-device interaction using kinect.
In Proceedings of the 2014 ACM SIGCHI symposium on
Engineering interactive computing systems (EICS ‘14).
ACM, New York, NY, USA, 65-74.
http://dx.doi.org/10.1145/2607023.2607024

75. Michael Nebeling, Theano Mintsi, Maria Husmann, and
Moira Norrie. 2014. Interactive development of cross-
device user interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Sys-
tems (CHI ‘14). ACM, New York, NY, USA, 2793-
2802. https://doi.org/10.1145/2556288.2556980

76. Michael Nebeling and Moira Norrie. 2012. jQMulti-
Touch: lightweight toolkit and development framework
for multi-touch/multi-device web interfaces.
In Proceedings of the 4th ACM SIGCHI symposium on
Engineering interactive computing systems (EICS ‘12).
ACM, New York, NY, USA, 61-70.
https://doi.org/10.1145/2305484.2305497

77. Michael Nebeling. Playing the Tricky Game of Toolkits
Research. In workshop on HCI.Tools at CHI’2017.

78. Carman Neustaedter and Phoebe Sengers. 2012. Autobi-
ographical design in HCI research: designing and learn-
ing through use-it-yourself. In Proceedings of the De-
signing Interactive Systems Conference (DIS ‘12).
ACM, New York, NY, USA, 514-523.
https://doi.org/10.1145/2317956.2318034

79. Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, and An-
drew Fitzgibbon. 2011. KinectFusion: Real-time dense
surface mapping and tracking. In Proceedings of the
2011 10th IEEE International Symposium on Mixed and
Augmented Reality (ISMAR ‘11). IEEE Computer Soci-
ety, Washington, DC, USA, 127-136.
http://dx.doi.org/10.1109/ISMAR.2011.6092378

80. Mark W. Newman, Shahram Izadi, W. Keith Edwards,
Jana Z. Sedivy, and Trevor F. Smith. 2002. User inter-
faces when and where they are needed: an infrastructure
for recombinant computing. In Proceedings of the 15th
annual ACM symposium on User interface software and
technology (UIST ‘02). ACM, New York, NY, USA,
171-180. DOI: https://doi.org/10.1145/571985.572009

81. Jakob Nielsen. 1994. Usability engineering. Elsevier.
82. Dan R. Olsen, Jr.. 2007. Evaluating user interface sys-

tems research. In Proceedings of the 20th annual ACM
symposium on User interface software and technolo-
gy (UIST ‘07). ACM, New York, NY, USA, 251-258.
https://doi.org/10.1145/1294211.1294256

83. Antti Oulasvirta and Kasper Hornbæk. 2016. HCI Re-
search as Problem-Solving. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Sys-
tems (CHI ‘16). ACM, New York, NY, USA, 4956-
4967. https://doi.org/10.1145/2858036.2858283

84. Max Pfeiffer, Tim Duente, and Michael Rohs. 2016. Let
your body move: a prototyping toolkit for wearable
force feedback with electrical muscle stimulation.
In Proceedings of the 18th International Conference on
Human-Computer Interaction with Mobile Devices and
Services (MobileHCI ‘16). ACM, New York, NY, USA,
418-427. https://doi.org/10.1145/2935334.2935348

85. Peter G. Polson, Clayton Lewis, John Rieman, and Cath-
leen Wharton. 1992. Cognitive walkthroughs: a method
for theory-based evaluation of user interfaces. Int. J.
Man-Mach. Stud.36, 5 (May 1992), 741-773.
http://dx.doi.org/10.1016/0020-7373(92)90039-N

86. Jenny Preece and H. Dieter Rombach. 1994. A taxono-
my for combining software engineering and human-
computer interaction measurement approaches: towards
a common framework. Int. J. Hum.-Comput. Stud. 41, 4
(October 1994), 553-583. 10.1006/ijhc.1994.1073
http://dx.doi.org/10.1006/ijhc.1994.1073

87. Raf Ramakers, Fraser Anderson, Tovi Grossman, and
George Fitzmaurice. 2016. RetroFab: A Design Tool for
Retrofitting Physical Interfaces using Actuators, Sensors
and 3D Printing. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems (CHI
‘16). ACM, New York, NY, USA, 409-419.
https://doi.org/10.1145/2858036.2858485

88. Raf Ramakers, Kashyap Todi, and Kris Luyten. 2015.
PaperPulse: An Integrated Approach for Embedding
Electronics in Paper Designs. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Compu-
ting Systems (CHI ‘15). ACM, New York, NY, USA,
2457-2466. https://doi.org/10.1145/2702123.2702487

89. Yvonne Rogers, and Paul Marshall. (2017). Research in
the Wild. Synthesis Lectures on Human-Centered Infor-
matics, 10(3).

90. Mark Roseman and Saul Greenberg. 1996. Building
real-time groupware with GroupKit, a groupware
toolkit. ACM Trans. Comput.-Hum. Interact. 3, 1 (March
1996), 66-106. http://dx.doi.org/10.1145/226159.226162

91. Daniel Salber, Anind K. Dey, and Gregory D. Abowd.
1999. The context toolkit: aiding the development of
context-enabled applications. In Proceedings of the
SIGCHI conference on Human Factors in Computing
Systems (CHI ‘99). ACM, New York, NY, USA, 434-
441. http://dx.doi.org/10.1145/302979.303126

92. Antti Salovaara, Antti Oulasvirta, and Giulio Jacucci.
2017. Evaluation of Prototypes and the Problem of Pos-
sible Futures. In Proceedings of the 2017 CHI Confer-
ence on Human Factors in Computing Systems (CHI

http://dx.doi.org/10.1145/344949.344959
http://dx.doi.org/10.1145/2607023.2607024
https://doi.org/10.1145/2556288.2556980
https://doi.org/10.1145/2305484.2305497
https://doi.org/10.1145/2317956.2318034
http://dx.doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1145/571985.572009
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/2858036.2858283
https://doi.org/10.1145/2935334.2935348
http://dx.doi.org/10.1016/0020-7373(92)90039-N
http://dx.doi.org/10.1006/ijhc.1994.1073
https://doi.org/10.1145/2858036.2858485
https://doi.org/10.1145/2702123.2702487
http://dx.doi.org/10.1145/302979.303126

‘17). ACM, New York, NY, USA, 2064-2077.
https://doi.org/10.1145/3025453.3025658

93. Valkyrie Savage, Colin Chang, and Björn Hartmann.
2013. Sauron: embedded single-camera sensing of print-
ed physical user interfaces. In Proceedings of the 26th
annual ACM symposium on User interface software and
technology (UIST ‘13). ACM, New York, NY, USA,
447-456. http://dx.doi.org/10.1145/2501988.2501992

94. Valkyrie Savage, Sean Follmer, Jingyi Li, and Björn
Hartmann. 2015. Makers’ Marks: Physical Markup for
Designing and Fabricating Functional Objects.
In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (UIST ‘15).
ACM, New York, NY, USA, 103-108.
https://doi.org/10.1145/2807442.2807508

95. Valkyrie Savage, Xiaohan Zhang, and Björn Hartmann.
2012. Midas: fabricating custom capacitive touch sen-
sors to prototype interactive objects. In Proceedings of
the 25th annual ACM symposium on User interface
software and technology (UIST ‘12). ACM, New York,
NY, USA, 579-588.
https://doi.org/10.1145/2380116.2380189

96. Teddy Seyed, Alaa Azazi, Edwin Chan, Yuxi Wang, and
Frank Maurer. 2015. SoD-Toolkit: A Toolkit for Interac-
tively Prototyping and Developing Multi-Sensor, Multi-
Device Environments. In Proceedings of the 2015 Inter-
national Conference on Interactive Tabletops & Surfac-
es (ITS ‘15). ACM, New York, NY, USA, 171-180.
https://doi.org/10.1145/2817721.2817750

97. B. Schilit, N. Adams, and R. Want. 1994. Context-
Aware Computing Applications. In Proceedings of the
1994 First Workshop on Mobile Computing Systems and
Applications (WMCSA ‘94). IEEE Computer Society,
Washington, DC, USA, 85-90.
http://dx.doi.org/10.1109/WMCSA.1994.16

98. Chia Shen, Frédéric D. Vernier, Clifton Forlines, and
Meredith Ringel. 2004. DiamondSpin: an extensible
toolkit for around-the-table interaction. In Proceedings
of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI ‘04). ACM, New York, NY, USA,
167-174. http://dx.doi.org/10.1145/985692.985714

99. Jeffrey Stylos and Brad A. Myers. 2008. The implica-
tions of method placement on API learnability.
In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineer-
ing (SIGSOFT ‘08/FSE-16). ACM, New York, NY,
USA, 105-112.
http://dx.doi.org/10.1145/1453101.1453117

100. Ivan Edward Sutherland. 1980. Sketchpad: A Man-
Machine Graphical Communication System. Garland
Publishing, Inc., New York, NY, USA.

101. Nicolas Villar, Kiel Mark Gilleade, Devina Ram-
dunyellis and Hans Gellersen. 2007. The VoodooIO
gaming kit: a real-time adaptable gaming control-

ler. Comput. Entertain. 5, 3, pages.
http://dx.doi.org/10.1145/1316511.1316518

102. Nicolas Villar, James Scott, Steve Hodges, Kerry Ham-
mil, and Colin Miller. (2012) .NET Gadgeteer: A Plat-
form for Custom Devices. In Pervasive Computing. Per-
vasive 2012. Lecture Notes in Computer Science, vol
7319. Springer, Berlin, Heidelberg. 216-233
https://doi.org/10.1007/978-3-642-31205-2_14

103. Akira Wakita and Yuki Anezaki. 2010. Intuino: an au-
thoring tool for supporting the prototyping of organic in-
terfaces. In Proceedings of the 8th ACM Conference on
Designing Interactive Systems (DIS ‘10). ACM, New
York, NY, USA, 179-188.
http://dx.doi.org/10.1145/1858171.1858204

104. Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen
Wu, Hsin-Ruey Tsai, Rong-Hao Liang, Yi-Ping Hung,
and Mike Y. Chen. 2016. CircuitStack: Supporting Rap-
id Prototyping and Evolution of Electronic Circuits.
In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ‘16). ACM,
New York, NY, USA, 687-695.
https://doi.org/10.1145/2984511.2984527

105. Mark Weiser, (1991). The Computer for the 21st Centu-
ry. Scientific American, 265(3), 94-105.

106. Mikael Wiberg and Erik Stolterman. 2014. What makes
a prototype novel?: a knowledge contribution concern
for interaction design research. In Proceedings of the 8th
Nordic Conference on Human-Computer Interaction:
Fun, Fast, Foundational (NordiCHI ‘14). ACM, New
York, NY, USA, 531-540.
https://doi.org/10.1145/2639189.2639487

107. Alexander Wiethoff, Hanna Schneider, Julia Küfner,
Michael Rohs, Andreas Butz, and Saul Greenberg. 2013.
Paperbox: a toolkit for exploring tangible interaction on
interactive surfaces. In Proceedings of the 9th ACM
Conference on Creativity & Cognition (C&C ‘13), Ellen
Yi-Luen Do, Steven Dow, Jack Ox, Steve Smith, Kazu-
shi Nishimoto, and Chek Tien Tan (Eds.). ACM, New
York, NY, USA, 64-73. 10.1145/2466627.2466635
http://doi.acm.org/10.1145/2466627.2466635

108. Daniel Wigdor, Hrvoje Benko, John Pella, Jarrod Lom-
bardo, and Sarah Williams. 2011. Rock & rails: extend-
ing multi-touch interactions with shape gestures to ena-
ble precise spatial manipulations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems(CHI ‘11). ACM, New York, NY, USA, 1581-
1590. https://doi.org/10.1145/1978942.1979173

109. Raphael Wimmer, Matthias Kranz, Sebastian Boring and
Albrecht Schmidt. 2007. A Capacitive Sensing Toolkit
for Pervasive Activity Detection and Recognition. In
Proc. International Conference on Pervasive Computing
and Communications (PerCom’07), IEEE, White Plains,
NY., 171-180.
 10.1109/PERCOM.2007.1

https://doi.org/10.1145/3025453.3025658
http://dx.doi.org/10.1145/2501988.2501992
https://doi.org/10.1145/2807442.2807508
https://doi.org/10.1145/2380116.2380189
https://doi.org/10.1145/2817721.2817750
http://dx.doi.org/10.1109/WMCSA.1994.16
http://dx.doi.org/10.1145/985692.985714
http://dx.doi.org/10.1145/1453101.1453117
http://dx.doi.org/10.1145/1316511.1316518
http://dx.doi.org/10.1145/1858171.1858204
https://doi.org/10.1145/2984511.2984527
https://doi.org/10.1145/2639189.2639487
http://doi.acm.org/10.1145/2466627.2466635
https://doi.org/10.1145/1978942.1979173

110. Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li.
2007. Gestures without libraries, toolkits or training: a
$1 recognizer for user interface prototypes.
In Proceedings of the 20th annual ACM symposium on
User interface software and technology (UIST ‘07).
ACM, New York, NY, USA, 159-168.
https://doi.org/10.1145/1294211.1294238

111. Jacob O. Wobbrock and Julie A. Kientz. 2016. Research
contributions in human-computer interac-
tion. interactions 23, 3 (April 2016), 38-44.
https://doi.org/10.1145/2907069

112. Chi-Jui Wu, Steven Houben, and Nicolai Marquardt.
2017. EagleSense: Tracking People and Devices in In-
teractive Spaces using Real-Time Top-View Depth-
Sensing. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (CHI ‘17). ACM,
New York, NY, USA, 3929-3942.
https://doi.org/10.1145/3025453.3025562

113. Robert Xiao, Chris Harrison, and Scott E. Hudson. 2013.
WorldKit: rapid and easy creation of ad-hoc interactive
applications on everyday surfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ‘13). ACM, New York, NY, USA, 879-
888. https://doi.org/10.1145/2470654.2466113

114. Jishuo Yang and Daniel Wigdor. 2014. Panelrama: ena-
bling easy specification of cross-device web applica-
tions. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ‘14). ACM,
New York, NY, USA, 2783-2792.
http://dx.doi.org/10.1145/2556288.2557199

115. Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.
2009. Sikuli: using GUI screenshots for search and au-
tomation. In Proceedings of the 22nd annual ACM sym-
posium on User interface software and technolo-
gy (UIST ‘09). ACM, New York, NY, USA, 183-192.

https://doi.org/10.1145/1294211.1294238
https://doi.org/10.1145/2907069
https://doi.org/10.1145/3025453.3025562
https://doi.org/10.1145/2470654.2466113
http://dx.doi.org/10.1145/2556288.2557199

	Evaluation Strategies for HCI Toolkit Research
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	WHAT IS A TOOLKIT?
	Defining a Toolkit
	Why Do HCI Researchers Build Toolkits?
	Evaluating Toolkits

	METHODOLOGY
	Dataset
	Analysis and Results

	TYPE 1: DEMONSTRATION
	Why Use Demonstrations?
	Evaluation Techniques as Used in Demonstrations
	Individual Instances
	Collections
	Going Beyond Descriptions

	Challenges
	Reflection and Opportunities

	TYPE 2: USAGE
	Why Evaluate Usage?
	Evaluation Techniques as Used in Usage Studies
	Ways to Conduct Usage Studies
	Eliciting User Feedback

	Challenges
	Reflection and Opportunities

	TYPE 3: TECHNICAL PERFORMANCE
	Why Analyze the Technical Performance?
	Techniques as Used in Technical Performance
	Challenges
	Reflection and Opportunities

	TYPE 4: HEURISTICS
	Why Use Heuristics?
	Evaluation Techniques for Heuristics
	Challenges
	Reflection and Opportunities

	DISCUSSION
	Rethinking Evaluation
	Evaluation by Demonstration?
	Usability Studies (Still) Considered Harmful Some of the Time
	Successful Evaluation versus Successful Toolkit

	The Need for HCI Infrastructure Research
	Limitations

	conclusions
	Acknowledgements
	REFERENCES

