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ABSTRACT 
Toolkit research plays an important role in the field of HCI, 
as it can heavily influence both the design and implementa-
tion of interactive systems. For publication, the HCI commu-
nity typically expects toolkit research to include an evalua-
tion component. The problem is that toolkit evaluation is 
challenging, as it is often unclear what ‘evaluating’ a toolkit 
means and what methods are appropriate. To address this 
problem, we analyzed 68 published toolkit papers. From our 
analysis, we provide an overview of, reflection on, and dis-
cussion of evaluation methods for toolkit contributions. We 
identify and discuss the value of four toolkit evaluation strat-
egies, including the associated techniques that each employs. 
We offer a categorization of evaluation strategies for toolkit 
researchers, along with a discussion of the value, potential 
limitations, and trade-offs associated with each strategy. 
Author Keywords 
Toolkits; user interfaces; prototyping; design; evaluation. 
ACM Classification Keywords 
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INTRODUCTION 
Within HCI, Greenberg [30] defined toolkits as a way to en-
capsulate interface design concepts for programmers, includ-
ing widget sets, interface builders, and development envi-
ronments. Such toolkits are used by designers and developers 
to create interactive applications. Thus, they are generative 
platforms designed to create new artifacts, while simplifying 
the authoring process and enabling creative exploration.   
While toolkits in HCI research are widespread, researchers 
experience toolkit papers as being hard to publish [77] for 
various reasons. For example, toolkits are sometimes consid-
ered as merely engineering, as opposed to research, when in 
reality some interactive systems are ‘sketches’ using code as 
a medium to explore research contributions, whereas others 

embody their contributions in the code itself [27]. Some-
times, toolkit researchers are asked for a particular evaluation 
method without consideration of whether such an evaluation 
is necessary or appropriate to the particular toolkit contribu-
tion. Consequently, acceptance of toolkits as a research con-
tribution remains a challenge and a topic of much recurrent 
discussion [8,27,30,66,73,82]. In line with other areas of HCI 
[30,82], we should expect HCI toolkit research to use appro-
priate evaluation methods to best match the particular re-
search problem under consideration [31,45,86]. However, 
while research to date has used evaluation methods, there is 
little overall reflection on what methods are used to evaluate 
toolkits, when these are appropriate, and how the methods 
achieve this through different techniques.   
The last two decades have seen an increase in HCI toolkit 
papers [66]. These papers typically employ a range of evalua-
tion methods, often borrowing and combining techniques 
from software engineering, design, and usability evaluation. 
From this corpus, we can consider how toolkit researchers 
collectively derive what evaluation methods are useful, when 
they are appropriate and how they are performed.   
Based on an analysis of 68 representative toolkit papers, this 
paper contributes an overview and in-depth discussion of 
evaluation methods for toolkits in HCI research. We identify 
four types of evaluation strategies: (1) demonstration, (2) 
usage, (3) technical benchmarks, and (4) heuristics.  We pre-
sent these four evaluation types, and opine on the value and 
limitations associated with each strategy. Our synthesis is 
based on the sample of representative toolkit papers. We link 
interpretations to both our own experiences and earlier work 
by other toolkit researchers. Researchers can use this synthe-
sis of methods to consider and select appropriate evaluation 
techniques for their toolkit research. 
WHAT IS A TOOLKIT? 
Within HCI literature, the term ‘toolkit’ is widely used to 
describe various types of software, hardware, design and 
conceptual frameworks. Toolkit research falls into a category 
of constructive research, which Oulasvirta and Hornbæk 
define as “producing understanding about the construction of 
an interactive artefact for some purpose in human use of 
computing” [83]. They specify that constructive research is 
driven by the absence of a (full) known solution or resources 
to implement and deploy that solution.  
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As constructive research, toolkits examine new conceptual, 
design or technical solutions to unsolved problems.  To clari-
fy our review’s scope, we define and summarize what is 
meant by “toolkit” and “toolkit evaluation”, and why HCI 
researchers build toolkits. 
Defining a Toolkit 
We extend Greenberg’s original definition [30] to define 
toolkits as generative platforms designed to create new inter-
active artifacts, provide easy access to complex algorithms, 
enable fast prototyping of software and hardware interfaces, 
and/or enable creative exploration of design spaces. Hence, 
toolkits present users with a programming or configuration 
environment consisting of many defined permutable building 
blocks, structures, or primitives, with a sequencing of logical 
or design flow affording a path of least resistance. Toolkits 
may include automation (e.g. recognizing and saving ges-
tures [67]) or monitoring real-time data (e.g. visualization 
tools [52,64]) to provide developers with information about 
their own process and results. 
Why Do HCI Researchers Build Toolkits? 
Before discussing toolkit evaluation, we elaborate on what 
they contribute to HCI research. Wobbrock and Kientz posi-
tion toolkits as artifact contributions, where “new knowledge 
is embedded in and manifested by artifacts and the support-
ing materials that describe them” [111]. We summarize dis-
cussions by Myers et. al [73], Olsen [82] and Greenberg [30] 
on the value of HCI toolkits into five goals: 
G1. Reducing Authoring Time and Complexity. Toolkits 
make it easier for users to author new interactive systems by 
encapsulating concepts to simplify expertise [30,82]. 
G2. Creating Paths of Least Resistance. Toolkits define 
rules or pathways for users to create new solutions, leading 
them to right solutions and away from wrong ones [73]. 
G3. Empowering New Audiences. Given that toolkits reduce 
the effort to build new interactive solutions, they can enable 
new audiences to author these solutions.  For example, Olsen 

[82] discusses how interface builders opened interface design 
to artists and designers. 
G4. Integrating with Current Practices and Infrastructures. 
Toolkits can align their ideas to existing infrastructure and 
standards, enabling power in combination [82] and highlight-
ing the value of infrastructure research for HCI [25]. For ex-
ample, D3 [14] integrated with popular existing standards, 
which arguably contributed significantly to its uptake.  
G5. Enabling Replication and Creative Exploration. 
Toolkits allow for replication of ideas that explore a concept 
[30], which collectively can create a new suite of tools that 
work together to enable scale and create “larger and more 
powerful solutions than ever before” [82]. 
Evaluating Toolkits 
A common concern among HCI toolkit and system research-
ers is the difficulty in publishing [77]. This might be due to 
the expectations and prevalence of evaluation methods (e.g. 
user studies), regardless of whether the methods are neces-
sary or appropriate to the toolkit’s contribution. Part of the 
problem is a lack of clear methods [77] or a clear definition 
of ‘evaluation’ within a toolkit context. As toolkit designers, 
our stance is that the evaluation of a toolkit must stem from 
the claims of the paper. Evaluation is a means to follow 
through with the proposed claims of the innovation. We 
should ask ourselves: what do we get out of the evaluation?  
Toolkits are typically different from systems that perform 
one task (e.g. a system, algorithm, or an interaction tech-
nique) as they provide generative, open-ended authoring 
within a solution space. Toolkit users can create different 
solutions by reusing, combining and adapting the building 
blocks provided by the toolkit. Consequently, the trade-off to 
such generative power is the large space that remains under 
explored. Evaluation methods that only examine a small sub-
set of the toolkit may not demonstrate the research contribu-
tion, nor do they necessarily determine a toolkit’s success. As 
summarized by Olsen [82] in his reflective paper on evaluat-

 
Table 1. Overview of all toolkits in the sample. Types: (1) Demonstration, (2) Usage, (3) Technical Performance and (4) Heuristics. 

 



ing systems research: “simple metrics can produce simplistic 
progress that is not necessarily meaningful.” The central 
question is thus: what is an evaluation? And, how do we re-
flect and evaluate such complex toolkit research? 
METHODOLOGY 
This paper elucidates evaluation practices observed in mod-
ern toolkit research within the HCI community. To build up 
an in-depth understanding of contemporary evaluation prac-
tices, we report the results of a meta-review based on an 
analysis of a representative set of toolkit papers.  
Dataset 
To collect a representative set of HCI toolkit papers, we 
gathered 68 papers matching the following inclusion criteria. 
Publication Venue and Date, Keywords: we initially select-
ed 58 toolkit papers that were published since 2000 at the 
major ACM SIGCHI venues (CHI, UIST, DIS, Ubicomp, 
TEI, MobileHCI). We included papers containing keywords: 
toolkit, design tool, prototyping tool, framework, API. All 58 
papers comply with our proposed toolkit definition. 
Exemplary Papers. We then identified 10 additional papers 
published elsewhere, based on exemplary impact (e.g. cita-
tions, uptake) such as D3 [14], Piccolo/Jazz [6], and the Con-
text Toolkit [91].  Our total dataset includes 68 papers (Table 
1). While other toolkit papers exist, our dataset serves as a 
representative sample from which we could (1) gather insight 
and (2) initiate meaningful discussion about evaluation.  
Analysis and Results 
The dataset was analyzed via several steps. One of the au-
thors conducted open-coding [16] on a subset of our sample, 
describing the evaluation methods used in each publication. 
Next, we collectively identified an initial set of evaluation 
methods and their variations as used across papers. At this 
point, four other co-authors performed focused coding [16] 
on the entire sample. We continued to apply the codes to the 
rest of the sample, iteratively refining and revisiting the cod-
ing schema.  After coding all papers in our sample, we creat-
ed categories [16] to derive the overarching evaluation strat-
egies used by toolkit researchers, thus arriving at the four 
evaluation strategies that we identify as (1) demonstration, 
(2) usage, (3) technical evaluation, and (4) heuristic evalua-
tion. Table 1 summarizes the analysis, showing the count of 
evaluation strategies seen in our sample. We caution that this 
frequency count is not necessarily indicative of a strategy’s 
overall appropriateness or success.  

The following sections step through the four evaluation 
types, summarized in Table 2. For each type, we discuss their 
value and the specific techniques used. We then reflect on 
challenges for that type, followed by opportunities to 
strengthen the evaluation: opinions are based on our insights 
gained from data analysis, our experiences and/or opinions 
offered by other researchers. The result is a set of techniques 
that researchers can use, on their own or in combination, to 
assess claims made about their toolkits. 
TYPE 1: DEMONSTRATION 
The now famous “mother of all demos” by Douglas Engel-
bart [26] established how demonstrating new technology can 
be a powerful way of communicating, clarifying and simply 
showing new ideas and concepts. The transferability of an 
idea to neighbouring problem spaces is often shown by 
demonstrating application examples [83]. In our sample, 66 
out of 68 papers used demonstrations of what the toolkit can 
do, either as the only method (19/68) or in combination with 
other methods (47/68). Demonstrations show what the toolkit 
might support, as well as how users might work with it, rang-
ing from showing new concepts [32,91], to focused case 
studies [4,96] to design space explorations [43,54,64]. 
Why Use Demonstrations? 
The goal of a demonstration is to use examples and scenarios 
to clarify how the toolkit’s capabilities enable the claimed 
applications. A demonstration is an existence proof showing 
that it is feasible to use and combine the toolkit’s components 
into examples that exhibit the toolkit’s purpose and design 
principles. These examples can illustrate different aspects of 
the toolkit, such as using the basic building blocks, demon-
strating the workflows, or discussing the included tools. 
Since toolkits are a ‘language’ to simplify the creation of new 
interactive systems [30], demonstrations describe and show 
how toolkits enable paths of least resistance for authoring.   
In its most basic form, a demonstration consists of examples 
exploring the expressiveness of the toolkit by showing a 
range of different applications. More systematic approaches 
include explorations of the threshold, ceiling or design space 
supported by the toolkit. The threshold is the user’s ability to 
get started using the toolkit, while ceiling refers to how much 
can be achieved using the toolkit [73]. While demonstrations 
may not show the full ‘height’ of the ceiling, they are an in-
dicator of the toolkit’s achievable complexity and potential 
solution space. The principles and goals of the toolkit can 
also be demonstrated through a design space exploration 
which enumerates design possibilities [106] and gives exam-
ples from different points in that space. 
Evaluation Techniques as Used in Demonstrations 
Our sample reveals several techniques to demonstrate a 
toolkit. These techniques are not mutually exclusive and can 
be combined in different ways. The simplest unit of meas-
urement for demonstration is an individual instance. While 
multiple instances can be described separately, researchers 
may carefully select instances as collections to either explore 
the toolkit’s depth (case studies) or its generative breadth 
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(design spaces). Toolkit authors may also go beyond describ-
ing the features of instances, by showing the detailed ‘how 
to’ steps involved in the instance authoring process. 

Individual Instances 
1. Novel Examples. Demonstration of a toolkit can be done 
by showing the implementation of novel applications, sys-
tems or interaction techniques. The Context Toolkit [91] is a 
classic case of how example applications are used to demon-
strate the underlying concepts of context-awareness [97]. A 
more recent example is WorldKit [113], which demonstrates 
projection-based touch interfaces on everyday surfaces in 
four different environments. Similarly, in DiamondSpin [98], 
the authors explore the capabilities of their multi-touch table 
toolkit by showing five different tabletop designs. Peripheral 
Displays Toolkit [68] uses three applications to demonstrate 
ways to enable new peripheral displays. Finally, Sauron [93] 
describes three prototypes to demonstrate the toolkit’s inter-
active features for physical prototypes. What is important is 
that these examples detail how the features, design principles, 
and building blocks enable new applications. 
2. Replicated Examples. Toolkits often facilitate authoring of 
systems that were previously considered difficult to build. 
Recreating prior applications, systems or interaction tech-
niques shows how the toolkit supports and encapsulates prior 
ideas into a broader solution space. For instance, Prefuse [38] 
states that they “reimplemented existing visualizations and 
crafted novel designs to test the expressiveness, effectiveness, 
and scalability of the toolkit”. In d.tools [37], the authors 
recreated a classic iPod interface, while the TouchID Toolkit 
[67] recreated prior work from external sources (e.g. Rock 
and Rails [108]) in bimanual interaction. Similarly, 
SwingStates [2] and Prefab [20] illustrate the expressiveness 
and power of their toolkit by recreating interaction tech-
niques in the research literature (e.g. Bubble Cursor [34], 
CrossY [1]).  These examples demonstrate how toolkits re-
duce complexity, effort and development time for recreating 
applications. Further, replication can demonstrate how the 
toolkit generalizes across a variety of examples. 

Collections 
3. Case Studies. Because toolkits often support complex ap-
plications, case studies (typically concurrent research pro-
jects) can help explore and elaborate the toolkit in greater 
depth. Five of our 68 papers included case studies to reveal 
what their toolkit can do. The iStuff toolkit [4] presents case 
studies of other research projects that use the toolkit. Similar-
ly, the SoD toolkit [96] describes its use in complex case 
studies: an oil and gas exploration application and an emer-
gency response system.  Prefuse [38] reports on the design of 
Vizster, a custom visualization tool for social media data. 
Although case studies are less common than examples, they 
convincingly demonstrate the toolkit’s application within 
complex scenarios as opposed to small example applications. 
4. Exploration of a Design Space. A design space explora-
tion exemplifies the breadth of applications supported by the 
toolkit by fitting it into a broader research theme. Design 

spaces often consist of dimensions with properties (categori-
cal or spectrum variables) [106] that examples can align to. A 
toolkit author can create a collection of examples that each 
examine different points in the design space. For example, 
WatchConnect [43] describes a design space of how the 
toolkit supports interaction across a watch prototype and a 
second screen. By providing five examples, including both 
replicated and novel techniques, the authors satisfy the 
smartwatch + second screen design space by example. The 
Proximity Toolkit [64] similarly describes the design dimen-
sions of proxemic interaction [5] (e.g. distance, orientation, 
identity) and demonstrates through examples how the toolkit 
enables new proxemic-aware applications. Pineal [54] ex-
plores different ways of using and repurposing mobile sen-
sors and outputs to author smart objects, using a combination 
of novel examples and replication. Finally, DART [61] is an 
example of a toolkit supporting the exploration of a design 
space through a range of ‘behaviors’ and examples. A design 
space exploration is thus a systematic way of trying to map 
out possible design boundaries. Although exploring the full 
design space is often impossible, examples demonstrate the 
breadth of designs enabled by the toolkit.  

Going Beyond Descriptions 
5. ‘How To’ Scenarios. Toolkit papers can demonstrate a 
step-by-step breakdown of how a user creates a specific ap-
plication.  Scenarios break down tasks into individual steps 
that demonstrate the workflow, showing the results of each 
step. We found three ways to describe scenarios. One way is 
to dedicate a section to describe how one example is authored 
(e.g. RetroFab [87], Pineal [54]). Second, a scenario can be 
used throughout the paper to show how different parts of an 
example come together (e.g. the Proximity Toolkit [64]). 
Demo scenarios, as in VoodooSketch [12] and Circuitstack 
[104] are common ways to explain how users might experi-
ence a toolkit’s path of least resistance. Third, authors might 
include code samples. For instance, Prefuse [38] and Weave 
[17] use code snippets explaining how certain design princi-
ples or building blocks are supported directly in code.  
Challenges 
Using demonstrations to ‘evaluate’ a toolkit poses several 
challenges. First is its rationale: although novel demonstra-
tions built atop the toolkit illustrate toolkit expressiveness, it 
is sometimes unclear who would use such applications and 
why. Second, while creating demonstrations can describe 
‘what if’ scenarios, the demonstration itself may not show 
that the toolkit can indeed be used by people other than the 
toolkit’s authors. Such lack of external validation may pose 
issues depending on the claims made in the paper.  Third, 
example applications often aim to implement aspects of a 
potential future today; however, the target audience might 
not yet exist or simply be unclear. Speculating on the intend-
ed audience creates the risk of an elastic user [18], where the 
definition of the target audience is stretched to accommodate 
implementation decisions and toolkit design. Finally, many 
toolkit systems (e.g. [64, 88, 112]) work with specialized or 
custom-built hardware. In creating these arrangements, the 



authors could alienate the potential audience, as some end-
users would not be able to recreate these complicated setups.  
Reflection and Opportunities 
Provide Rationale for Toolkit Design and Examples. Within 
every piece of technology lie assumptions, principles and 
experiences that guide the design of that technology. Many of 
these assumptions can come across as arbitrary when design-
ing toolkits. However, toolkit authors often rely on their ex-
perience even if they do not explicitly mention it. Discussing 
the understanding of the challenges, perhaps informed by 
earlier studies or experiences with other tools or toolkits, can 
help address why different decisions were made. Nebeling et 
al.’s XD toolkit suite [74,75,76] is a compelling example of 
how to do this. They constructed several toolkits to structur-
ally and systematically explore the large design space of 
cross-device computing. They clearly motivated the design 
and development of each toolkit by earlier experiences in 
designing toolkits and systems. More generally, research by 
design [39] helps explore concrete implementations of ideas. 
First-Hand Experience. Toolkit authors often have experi-
ence creating applications that the toolkit will support, and 
thus are genuinely familiar with the development challenges 
and steps that need simplifying. This experience leads to au-
tobiographical design [78] informing the toolkit design pro-
cess. In Phidgets [32], the authors discuss their frustrations in 
authoring hardware-based applications, which informed their 
design and implementation. A toolkit may also leverage ex-
periences with building similar toolkits. The design of D3 
[14] evolved from the authors’ earlier experiences in creating 
visualization toolkits (e.g. Prefuse [38], ProtoVis [13]).  
Prior Work. Challenges identified in previous research can 
help motivate the design of toolkits. For instance, the Context 
Toolkit [91] describes challenges in authoring context-aware 
applications based on prior work (e.g. new types of sensing 
from multiple distributed sources).  
Formative Studies. Authors can perform formative studies to 
understand their intended target audience. For instance, in 
d.tools [37], the authors conducted interviews at product de-
sign companies. Understanding current practices can help 
address challenges with the design of the toolkit.  
Discuss Boundaries and Underlying Assumptions. Despite 
including a ‘limitations’ section, toolkit authors often do not 
discuss aspects of the toolkit that do not work well. Critically 
discussing what does not work or the tasks complicated by 
the toolkit might help steer away from a ‘sales pitch’. 
TYPE 2: USAGE 
While demonstrations answer the question of ‘what can be 
built with the toolkit’, evaluating usage helps verify ‘who can 
use the toolkit’ under certain circumstances, i.e., which tasks 
or activities can a target user group perform and which ones 
still remain challenging? To evaluate if and how a user group 
can actually use the tool, it is important to investigate how 
that user group uses and appropriates the toolkit. Our sample 
shows that more than half of the papers (35/68) include usage 

studies. Only one toolkit paper uses a usage study as the only 
evaluation method [42]. Usage studies are often combined 
with demonstrations (33/68) or technical evaluations (9/68).  
Why Evaluate Usage? 
The defining feature of usage evaluations is the involvement 
of external users working with the toolkit.  Much of usage 
evaluation is informed by traditional user studies [24,53,81], 
and can help verify whether the toolkit is (1) conceptually 
clear, (2) easy to use, or (3) valuable to the audience. 
Given the prevalence of usability studies in HCI (e.g. 
[24,81]), many toolkit papers examine the toolkit’s usability 
— i.e., how easy it is to use the toolkit. Common measures 
are users’ opinions, preferences, completion time, the number 
of steps (e.g. lines of code), or number of mistakes. In addi-
tion, given that toolkits often propose new workflows, or 
enable creation of new kinds of artifacts, it is important to 
know if it will be useful to the target audience. In looking for 
utility, researchers inquire into the audiences’ interest or out-
comes. One way to assess utility is to look at the output of 
the toolkit. This consists of investigating the artifacts that the 
users authored with the toolkit. Lastly, a usage evaluation 
might look to understand use of the toolkit: how a user ap-
propriates a toolkit, how it is used over time, and what kind 
of workflows are developed. The processes together with the 
end results can point towards paths of least resistance, some 
which may differ from the ones the toolkit authors’ intended. 
Evaluation Techniques as Used in Usage Studies 
Given the involvement of external people in usage evalua-
tions, toolkit authors can perform a variety of evaluations 
with users, each yielding different kinds of insights. Our data 
revealed five ways to conduct usage studies and two addi-
tional complementary techniques for eliciting user feedback. 
The first four techniques refer to controlled lab experiments, 
where participants are given consistent tasks that can yield 
accurate measures, such as completion time. The fifth tech-
nique is somewhat more aligned with ‘in the wild’ studies, 
which can provide more realism [69,89]. The last two tech-
niques are complementary methods to elicit user feedback.  

Ways to Conduct Usage Studies 
1. Usability Study. When toolkits claim that they facilitate a 
process, authors may choose to carry out a usability study. 
This can help identify issues with the toolkit, using measures 
of participants’ performance (e.g. time, accuracy), and further 
qualitative feedback. Participants are typically given pro-
gramming tasks that exploit various aspects of the toolkit. 
These programming tasks tend to be closed-ended, though 
some may include a small degree of open-endedness (e.g. 
[36]). To increase control, some tasks may incorporate pre-
written skeleton code (e.g. [74]). Usability studies can exam-
ine various aspects of toolkits. For example, Papier-Mâché 
[52] shows an evaluation of the toolkit’s API usability, which 
revealed inconsistency in the naming of software components 
and aspects of the toolkit that lacked documentation. Hart-
mann et al. coined the term “first-use study” [37] in which 
participants are exposed to a toolkit for the first time and 



assigned different tasks. In d.tools [37], the study aimed at 
determining the threshold [73] of the system, while in Exem-
plar [36] the focus was on determining the successes and 
shortcomings of the tool. The study in Exemplar [36] com-
bined close-ended tasks with a more open-ended task. Some 
papers report modifying the toolkit to address issues identi-
fied in a usability study [52,60], which Greenberg and Bux-
ton suggest should be the main goal of usability studies [31].  
2. A/B Comparisons. One way to suggest improvement over 
existing work is to compare the new toolkit to a baseline. 
Baselines include not having a toolkit, or working with a 
different toolkit. In MAUI [40], the authors compare differ-
ent platforms to measure what they defined as effort: number 
of classes, total lines of code, lines written for feedthrough 
and development time. By comparing it to GroupKit (a prior 
toolkit that supports a similar task [90]) and Java (no toolkit), 
the authors can show the degree of improvement from the 
current state-of-the-art. A/B comparisons could test for varia-
tions within the toolkit. Lin and Landay [59] compared a full 
version of their prototyping tool to one without the key fea-
tures (patterns and layers) to determine the improvement and 
preference. Finally, both Paperbox [107] and XDStudio [75] 
compare different configurations of their toolkit. 
3. Walkthrough Demonstrations. A walkthrough demonstra-
tion consists of showing the toolkit to a potential user and 
gathering their overall impressions. Unlike cognitive 
walkthroughs [85], walkthrough demonstrations are not 
about the user working directly with the tool to identify usa-
bility problems. In a walkthrough demonstration, the experi-
menter has full control and explains the workflow to partici-
pants, together with examples and even limitations. This ap-
proach is particularly suitable when toolkit creators want to 
get feedback on the utility of their toolkit, as it removes the 
focus from using the toolkit (as one might find in a usability 
study) and shifts it towards the value of having the toolkit. 
While the walkthrough technique has not been explored ex-
tensively, RetroFab [87] is an example of this approach. This 
technique can be useful to gather feedback on the idea rather 
than the specific toolkit implementation, and might serve for 
toolkits that are not ready for usability testing or deployment. 
4. Observation. Direct observation helps inform how users 
approached the toolkit to solve problems ranging from closed 
tasks requiring a specific solution to a given problem, to open 
tasks where participants formulate the problem and use the 
toolkit to create their own solution. While our analyzed pa-
pers rarely presented any in-depth discussion of participants’ 
processes or workflows, they did provide examples of the 
toolkit’s use. HapticTouch [55] tested participants’ ability to 
transfer concepts about haptics, which were provided at vary-
ing levels of abstraction, into an interactive application: its 
authors assessed the paths of least resistance the toolkit af-
forded to solve both open and close-ended tasks. Our analysis 
also saw observational studies used within short-term [84] 
and long-term [51,103] workshop settings involving multiple 
participants. For example, Pfeiffer et al. [84] asked partici-

pants to brainstorm ideas and create Wizard-of-Oz prototypes 
using the toolkit. Their video analysis discusses the applica-
tions created, as well as in-depth details of how their crea-
tions were made. In C4 [51], participants attended 3-week 
workshops, with some staying further for a 4-week artist res-
idency: observation informed its creators on how design de-
cisions held up in the implementation.  
5. Take-Home Studies. Some external validity [69] can be 
acquired by conducting experiments outside lab settings. 
While it is difficult to deploy a toolkit before it has gained 
broader acceptance, researchers can provide their toolkit to 
“early adopter” participants. Participants receive the toolkit 
(and all necessary components and documentation) to create 
any applications of their liking within a given timeframe (e.g. 
a week). Phidgets [32], jQMultiTouch [76] and the Proximity 
Toolkit [64] are iconic examples where students in an ad-
vanced HCI class were given access to the toolkits and nec-
essary hardware components to create interesting examples 
as a prompt. They all demonstrate how students could easily 
work with the proposed constructs, where they focused on 
design aspects of the assignment versus low-level coding. 

Eliciting User Feedback 
6. Likert Scale Questionnaires. Likert scales provide a non-
parametric value pertaining to a question. The questions can 
later be analyzed either through non-parametric tests or by 
examining the median values. In toolkit research, while often 
acting as validation of claims (e.g. ease of use), Likert scales 
can formalize the results to clarify a hypothesis. For instance, 
in Exemplar [36], the authors were unsure as to whether the 
system empowered both experts and non-experts, as the per-
formance between these two can differ considerably. By us-
ing Likert scale questionnaires, participant responses con-
firmed that both experts and non-experts felt empowered, 
thus validating their hypothesis.  Other examples like Dam-
ask [59], d.tools [37], Paperbox [107] and Panelrama [114] 
use Likert scales to quantify user feedback on their system. 
This feedback often complements other usability results. 
7. Open-Ended Interviews. In our sample, 12 papers ask 
participants about their experiences or challenges performing 
their tasks, which provided the authors with insight in terms 
of processes, successes and shortcomings of the toolkit 
[38,42,114]. Interview questions can start from a script, but 
are open in that they allow further inquiry as opportunities 
arise, such as pursuing interesting and/or unclear responses. 
Quoting participants gives life and adds strength to findings 
[17,60,95]. Interviews can also expose how users perceive 
toolkit features, and can contextualize other usage data.  
Challenges 
Evaluating the toolkit’s implementation through usability 
tests could distract from the conceptual ideas as well as the 
opportunities facilitated by the toolkit. Olsen [82] warns 
against falling into “the usability trap”, as the three underly-
ing assumptions for usability evaluation – walk up and use, 
standardized tasks, and problem scalability – are rarely met 
for systems research. Additionally, toolkits in HCI research 



are still prototypes. It is difficult for a small team to create a 
toolkit with the quality of a commercial product (fatal flaw 
fallacy [82]). Controlled experiments measuring usability are 
limited in scope and evaluate a very small subset of what the 
toolkit can accomplish, making it difficult to generalize usage 
results. Furthermore, selected experimental tasks might fa-
vour elements that the toolkit can accomplish. In achieving 
control of the tasks, researchers may optimize for these tasks, 
or only create what a usability test can measure [82].  
While observations of people using the toolkit provide in-
formation about use, they may not assess how the toolkit 
fares in the real world. McGrath [69] discusses this as the 
trade-off between realism, precision and control. Even in 
“take home” studies, realism is compromised: participants 
are given all necessary components, instruction, access to 
resources (e.g. documentation, direct access to the toolkit 
creators). This creates an idealistic scenario not necessarily 
present in real-world adoption [56]. Furthermore, it is diffi-
cult to identify appropriate participants for usage evaluations, 
especially as toolkits propose new ways to solve a problem. 
Specialized target audiences may not even exist yet [77]. 
Given the academic context, it is often easiest to find student 
populations. Students (e.g. computer science students) are 
often used as a stand-in for the target audience (e.g. develop-
ers), assuming that if students can use the toolkit then profes-
sionals might too. However, results may not always transfer 
to the intended target audience. Toolkits often require exten-
sive use before becoming familiar. Thus, a premature evalua-
tion can set up the toolkit for an unfair comparison. 
Reflection and Opportunities 
Bringing Utility into the Picture. A central challenges of usa-
bility evaluation is its focus on toolkit usability vs. utility 
[31]: while a toolkit may be usable, it may not be useful. 
Walkthroughs and interviews can help here, where questions 
about utility can be raised and responses explored in depth.  
Selecting Tasks and Measures Carefully. While more control, 
more measures and more quantifiable results seemingly pro-
vide rigour, we argue that rigour is only of value if truly rep-
resentative tasks and appropriate measures are used. Rigour 
should come from a careful selection of the method, tech-
nique, and means of executing the technique. Publications 
should clearly articulate why the chosen tasks and measures 
support the claims made in the paper [31]. 
Recognizing the Consequences of Audience Choice. Toolkit 
authors should critically reflect and understand the implica-
tions of their choice of audience to study. As mentioned, the 
audience can be a close approximation or a starting point, but 
authors need to articulate such implications and limitations. 
TYPE 3: TECHNICAL PERFORMANCE  
While demonstrations and usage studies evaluate what a 
toolkit can do and who might use that toolkit, researchers can 
evaluate the technical performance of the toolkit to find out 
how well it works. From our sample of 68 toolkit papers, 
about one third of the papers (18/68) include technical per-

formance studies. Technical studies are complementary to 
demonstration and usage evaluations, as they convey addi-
tional information on the technical capabilities of the toolkit. 
Why Analyze the Technical Performance?  
The goal of studying technical performance is to benchmark, 
quantify or analyze the toolkit or its components to verify or 
validate the performance. Technical performance can be 
measured in terms of efficiency (e.g. speed of the algorithm, 
throughput of a network protocol), precision (e.g. accuracy of 
an algorithm, fault tolerance), or comparison against prior 
techniques. Overall, the purpose is, thus, to measure some 
form of system performance. These measures show whether 
it meets basic usage standards (threshold), or if there are im-
provements over the state-of-the-art. Technical benchmarks 
can push the boundaries of the toolkit to show when it no 
longer works as expected. Authors sometimes turn to soft-
ware engineering metrics (e.g. lines of code, number of clas-
ses) to show improvement over existing practices. 

Techniques as Used in Technical Performance  
The Software Engineering community has a rich set of tools 
to evaluate the performance of systems [9]. Our dataset 
showed that toolkit authors examine a wide variety of 
benchmarks (e.g. website loading time [14], spatial resolution 
[33], framerate [28,51], GPU usage [51], memory allocation 
[13,51], load time [13], lines of source code [2,91], size of 
binary [2]). Performance metrics should be tied to the claims 
of the paper, and the needs that must be satisfied for the 
toolkit to be operational or go beyond the state-of-the-art.  
1. Benchmarking Against Thresholds. For certain types of 
applications, systems and algorithms, there are known, tested 
or desirable thresholds that serve as baseline to verify that a 
system meets a commonly accepted standard of use (e.g. 
accuracy, latency). For instance, 30 fps is often used for real-
time tracking systems [79]. Both KinectArms [28] and Ea-
gleSense [112] present new tracking systems benchmarked at 
this 30 fps rate. Thresholds can be derived empirically, tech-
nically or from experience using the tools.  
2. Benchmarking Against State-of-the-Art. Benchmarking 
often looks for improvements over existing state-of-the-art 
solutions. This comparison approach is often similar to algo-
rithm contributions in HCI (e.g. [110]), where a toolkit’s 
capabilities are compared against well-known baselines, or 
the best algorithm for that purpose. For instance, in Open-
CapSense [33], the authors compared the toolkit’s capacitive 
sensing performance to the earlier CapToolKit [109]. While 
not a toolkit (and thus not part of our dataset), the $1 Gesture 
Recognizer [110] is an excellent example of benchmarking 
against the state-of-the-art: the benchmarks showed that it 
was considerably close to the state-of-the-art, yet much sim-
pler to implement (about 100 lines of code). D3 [14] com-
pared page load time to a prior toolkit and to Adobe Flash. 
Page load time was deemed important given their use-case: 
viewing visualizations created with the toolkit on the web. 



Challenges 
Technical benchmarks often complement demonstrations or 
usage studies. Measuring technical benchmarks in isolation 
may highlight some human aspects of using a toolkit (e.g. 
frame rate, latency), but do not account for what it is like to 
use the toolkit. For instance, representative examples may 
still be difficult to program, even if requiring few lines of 
code. Similarly, a paper may not always (explicitly) clarify 
the benchmark’s importance (e.g. 30 fps in [112]). Another 
challenge is that benchmark testing relies on comparisons to 
an existing baseline. If performance specifications have not 
already been published, authors must access state-of-the-art 
systems to perform the comparisons. Given the prototypical 
nature of HCI toolkits and the fast-moving targets of tech-
nology [73], many pre-existing baselines may already be 
deprecated or require extensive reimplementation by the 
toolkit authors. Alternatively, a baseline may not exist, as the 
technical challenge may not have been solved before [82].  
Reflection and Opportunities 
Contextualize and State Technical Limitations. HCI toolkit 
researchers often have quite different goals from commercial 
toolkit developers. For example, researchers may want to 
show how interaction concepts can be packaged within an 
easy-to-program toolkit (e.g. its API), where the underlying – 
and perhaps quite limited – infrastructure only serves as 
proof of concept. Significant limitations should be stated and 
contextualized to explain why they do not (or do) matter. 

Risky Hypothesis Testing. Toolkit authors should openly dis-
cuss the rationale behind the tests performed and whether the 
tests are a form of stress testing. Similar to some of Green-
berg and Buxton’s arguments [31], perhaps the best approach 
is to actively attempt to break the toolkit’s proposed technical 
claims (e.g. the ability to accurately track up to four people in 
real-time [111]) to truly understand the toolkit’s technical 
boundaries. One way to test these boundaries is to stress-test 
the system’s scalability for a chosen metric. 
Open Source and Open Access. As toolkit researchers, we 
can facilitate comparison and replication by making our work 
available to help future researchers (e.g. [14,64,95]). Ideally, 
this goes beyond the academic publication or the toolkit 
source code and documentation, but also includes the 
benchmarking data so that others can run the tests (e.g. on 
different computers or as baselines for future studies). 
Discuss Implicit Baselines. While a toolkit paper may assume 
standard metrics to determine that a system works (e.g. 24 
fps, or few lines of code to accomplish a task), it may help to 
mention why this metric is relevant. Thus, less familiar read-
ers can better understand the performance implications. 
TYPE 4: HEURISTICS 
Heuristics in HCI are typically associated with Nielsen et 
al.’s (e.g. [72,81]) discount method to informally assess inter-
face usability. Given the challenges of toolkit evaluation, 
toolkit researchers have devised toolkit-centric heuristics 
(guidelines) to assess the end-result of a toolkit [10,82]. The 

toolkit is then inspected against these heuristics, which in 
turn serves to inform strengths, weaknesses, and reflection of 
the toolkit’s potential value. The heuristics have been ex-
tracted from tried and accepted approaches to toolkit design 
and have been used by others (e.g. Blackwell and Green’s 
heuristics [10] as used by [13,36], Olsen’s heuristics [82] as 
used by [43,58,70,71,74,96]). In our sample, heuristics al-
ways complemented other methods. 
Why Use Heuristics? 
Heuristics are used as a discount method that does not require 
human participants to gather insight, while still exposing 
aspects of utility. Olsen’s ideas of expressive leverage and 
expressive match [82] resonate with Greenberg’s view of 
toolkits as a language that facilitates creation [73], or Myers’ 
themes of successful systems helping where needed and cre-
ating paths of least resistance [73]. Heuristics are based on 
tried success [72] or theories (e.g. cognitive dimensions [8]). 
Blackwell and Green’s Cognitive Dimensions of Notation 
(CDN) [8] was initially offered as a set of discussion points 
that designers could also use as heuristics to verify system 
usability. Their primary goal was to create a vocabulary for 
experts to make early judgements when designing, and to 
articulate decisions later. The authors describe it as a synthe-
sis of several sources that can partially address elements of 
the interface design process. CDN also included a question-
naire approach [11] to structure user feedback sessions. 

Olsen’s heuristics [82] aimed to bring the focus of toolkit 
evaluation back to what he saw as the value of UI systems 
research, which corresponds to our aforementioned reasons 
why HCI researchers build toolkits. Olsen provided termi-
nology and means to support common claims made in toolkit 
papers. Interestingly, Olsen states that given a set of claims, 
one can demonstrate how the toolkit supports them, which 
may explain why our data shows prevalent combinations of 
Type 4 evaluations together with Type 1 (demonstrations). 

Following a comprehensive list of heuristics can help identify 
areas not addressed by the toolkit. Some heuristics might be 
more crucial (e.g. problem not previously solved [82]). Con-
versely, some may not be relevant for the proposed toolkit 
(e.g. secondary notations [10]). Heuristics can and should be 
omitted when appropriate [72]. 
Evaluation Techniques for Heuristics 
We identified three ways to carry out a heuristic evaluation: 
checklists, discussion, and as a basis for usage studies. 
1. Checklists. The checklist approach consists of selecting a 
heuristic evaluation approach and going through individual 
heuristics one at a time. In doing so, authors can reflect on 
whether the toolkit satisfies the heuristic or not, and the ex-
tent of meeting it. For instance, Hartmann et al. [36] followed 
Blackwell and Green’s CDN through a questionnaire [11]. In 
evaluating each item, they found that many the limitations of 
the system were due to the inability to show many sensor 
visualizations at once. Similarly, Meskens et al. [70] follow 



Olsen’s heuristics to determine which elements of the inter-
face are lacking (e.g. ability to generalize and reuse). 
2. Discussion. In contrast to the checklist approach, Olsen’s 
heuristics [82] are also used as reflection points in the discus-
sion of a toolkit paper. This reflection allows the authors to 
better understand the limitations and whether there are issues 
in the toolkit that are not addressed. Both Gummy [71] and 
WatchConnect [43] are examples of this approach, where 
authors reflect on shortcomings (and ways to address them) 
as well as compare their toolkits to the state of the art.  
3. Basing Usage Studies on Heuristics. Heuristics can help 
determine what is useful to evaluate. XDKinect [74] tailored 
their usage study to some of Olsen’s guidelines [82], such as 
reducing solution viscosity and ease of combination. 
Challenges 
A danger of heuristic evaluations is falling into self-fulfilling 
prophecies, where authors stretch definitions of the heuristics 
to justify their claims. Alternatively, authors might choose to 
only focus on (1) heuristics that their toolkit addresses or (2) 
how the toolkit addresses them without acknowledging the 
negative aspects or compromises (e.g. increasing flexibility at 
the expense of expressive match). Sometimes the heuristics 
are not relevant to a particular toolkit. For example, CDN 
[10] covers a breadth of applications, where some heuristics 
only apply to one group (e.g. visual programming environ-
ments). Omitting heuristics without clear rationale could lead 
readers to believe that the authors are cherry picking heuris-
tics. Heuristic evaluations are often carried out by the au-
thors, who may have an implicit bias. While heuristic evalua-
tion in HCI suggests the added value of external evaluators 
[72,81], it proves difficult for toolkits given their complexity. 
None of the surveyed papers used external evaluators.  
Reflection and Opportunities 
Using Heuristics as Design Guidelines. Heuristics can serve 
complementary purposes: they can inform design as well as 
help evaluate designs. Thus, toolkit authors can conceptually 
consider how to support aspects of creation early on through 
best practices (e.g. API practices [99]). As examples, the 
Intelligibility Toolkit [58] and HapticTouch [55] both discuss 
heuristics inspiring some of their design goals.  

Using Heuristics to Inform Techniques from Prior Types. 
Given the vocabulary provided by heuristics, authors can 
consider how demonstrations or usage studies might stem 
from the heuristics themselves. For example, Olsen [82] sug-
gests that one way to experimentally evaluate expressive 
match is to perform a “design flaw test”, where participants 
are asked to remedy a flaw using a regular design with “good 
expressive match” (e.g. colour picker) and a deficient design 
with “bad expressive match” (e.g. hex colour codes).  

Transparency. Toolkit authors can disambiguate cherry pick-
ing versus ignoring irrelevant heuristics by articulating why a 
heuristic is or is not considered. This will increase transpar-
ency and possibly expose gaps in the evaluation. 

DISCUSSION 
Our meta-review reveals 4 strategies to evaluate toolkits: (1) 
demonstrations (what a toolkit can do), (2) usage (who can 
use the toolkit and how), (3) technical evaluations (how well 
a toolkit performs), and (4) heuristics (to what extent the 
toolkit meets standard guidelines). We now offer several 
opinions, formed from own toolkit building experiences, the 
meta-review analysis and other toolkit researchers. 

Rethinking Evaluation 
Rather than considering some methods as better than others, 
we believe that it is more important to use methods that best 
match the claims of the toolkit paper, and what that evalua-
tion method might yield. One way to determine this might be 
for authors to ask themselves: if the evaluation technique 
were to be removed, what is the impact to the paper? In an-
swering that question, authors might realize the essential 
methods, and which ones are secondary or even unnecessary. 

Evaluation by Demonstration? 
One central observation in our review is that demonstrations 
are by far the most common way to communicate the func-
tionality of the toolkit. Demonstrations vary in complexity, 
ranging from small examples to complex interaction tech-
niques and systems. 19 toolkit papers used demonstration as 
the only way to communicate or evaluate the toolkit’s capa-
bilities. Novel and replicated examples are quite common 
due to their easy implementation and description. However, 
further analysis showed that it is rare to find more systematic 
explorations of the capabilities of toolkits through case stud-
ies concurrent to the time of publication, or design space ex-
plorations. Moreover, many toolkit papers combine examples 
with code snippets and how-to scenarios to help the reader 
understand what the toolkit supports. While demonstrations 
are often not considered a formal evaluation, they show evi-
dence through “research by design” [39] and are highly ef-
fective in communicating the principles, concepts and under-
lying ideas of the toolkit. In fact, using the toolkit to create 
prototypes can lead to refinements in the toolkit itself, as was 
done in SATIN [41]. When linked back to the five goals of 
toolkit research, demonstrations provide the most complete 
and compelling evidence for achieving the goals of designing 
the new toolkit. The wide adoption of evaluation by demon-
stration indicates that such well explored examples can be a 
measure of success for the underlying concepts and ideas of a 
specific toolkit implementation. 

Usability Studies (Still) Considered Harmful Some of the Time 
Half of all toolkit papers in our sample conducted usage stud-
ies. These include compelling examples examining how peo-
ple work with a toolkit; how a toolkit is used and appropriat-
ed in a realistic environment; or how toolkits enable creativi-
ty and exploration. Although usage studies play a fundamen-
tal role in establishing who can use a toolkit, our analysis 
shows that many authors still fall into the ‘usability trap’ 
[82]. Despite Greenberg and Buxton’s warning that usability 
studies can be ‘harmful’ if not applied to the right problem 
[31], many papers in our sample performed usability studies 
to evaluate complex toolkits. Such studies may employ artifi-



cial tasks, small sample sizes, and non-representative user 
groups to evaluate a small subset of paths offered by the 
toolkit. While still yielding results, these are limited to the 
specific task, and rarely generalize to the entire toolkit capa-
bilities, development paths, broader audience that would use 
the toolkit, and the context around toolkit learning and use. 

Echoing prior work discussing that usability studies are not 
always required for toolkit research [45,82], we believe nar-
row usability studies as currently done by most toolkit au-
thors at best play only a minor role establishing or evaluating 
the novelty or significance of the toolkit and its underlying 
ideas. If done narrowly, they should at least be combined 
with other techniques: all but one paper in our sample also 
included demonstrations or technical evaluations. Even so, 
we consider this a widespread application of a weak mixed 
method approach, where researchers may make – perhaps 
unwarranted – generalized usability claims across the entire 
toolkit. Careless usability evaluations can be costly, as they 
may evaluate the wrong possible futures and lead to false 
conclusions [92]. Usability studies can evaluate parts of the 
toolkit, but they must be designed and conducted with care.  

Successful Evaluation versus Successful Toolkit 
In our dataset, we observed a diverse range of toolkits that 
address various sub-fields within the HCI community, where 
there is no indication that the success of the toolkit was nec-
essarily tied to the success of the evaluation. Some of these 
toolkits have had enormous impact within the research com-
munity. For example, the Context Toolkit [91] has had a 
transformative effect on research within the space of context 
awareness, as evident from the 1326 citations.  Other toolkits 
have moved on to become successful outside of the research 
community. For instance, D3 [14] has been widely adopted 
for web-based interactive visualizations. Their paper already 
suggested that the evaluation may not be indicative of suc-
cess: “while we can quantify performance, accessibility is far 
more difficult to measure. The true test of D3’s design will be 
in user adoption” [14]. Success can also lie in enabling new 
research agendas. The Proximity Toolkit [64] operationalized 
proxemic interaction concepts into concrete building blocks 
and techniques. Many downloaded the toolkit for research or 
to learn how to build proxemic-aware applications.  

The Need for HCI Infrastructure Research 
We started this paper by arguing that toolkits have profound-
ly influenced HCI research and will continue to do so in the 
future. Going back to the pioneering work of Engelbart [26], 
Sutherland [100], or Weiser [105], we observe how invention 
through building interactive systems, architectures and 
frameworks enabled them to explore completely new spaces. 
Since then, there has been an enormous growth in toolkits 
exploring technical realizations of concepts, techniques and 
systems in many emerging areas within the field (e.g. physi-
cal computing, tangible interfaces, augmented reality, 
ubicomp) and demonstrating new possible futures.  

HCI systems and toolkit research serves to further develop 
and realize high-level interaction concepts (e.g. proxemic 

interactions [64]). Consequently, toolkits make these concep-
tual ideas very concrete, and enable further conversations and 
follow-up research. For instance, the Context Toolkit [91] 
was a very successful toolkit that moved research in context-
aware computing [97] forward by enabling developers to 
rapidly prototype context-aware applications. The toolkit 
provided a component-based architecture separating context 
inference from the applications that used context information 
and allowing developers to respond to context changes in an 
event-driven way. By making these ideas (and their realiza-
tion in software) very concrete, the Context Toolkit also 
fueled criticism from researchers who argued that a computa-
tional representation of context, as encapsulated in the 
toolkit, did not capture the complexity of how people behave 
in the real world. Greenberg [29] argued that many contextu-
al situations are not stable, discernable, or predictable, and 
argued for context-aware applications to explain the inferred 
context and how they respond to it (what Bellotti & Edwards 
refer to as “intelligibility” [7]). Interestingly, these discus-
sions led to development and integration of these ideas in 
future systems and toolkits, such as the Situations framework 
[19] and the Intelligibility Toolkit [58]. 

Limitations 
We make no pretense that our overview of evaluation strate-
gies for toolkits is complete. First, to ensure that our meta-
review focused on forms of evaluation that are relevant to 
currently accepted standards, we limited our sample to re-
cently published toolkit papers. Thus, we may have missed 
forms of evaluation used in past toolkit research. Second, 
many research projects make multiple contributions not cap-
tured in a single paper. Our analysis only reflects what is 
described in that single paper. For some of the toolkits in our 
meta-review, additional evaluations were described in later 
publications (e.g. Prefab [21]). Finally, the authors of this 
paper have all built and designed toolkits. While our reflec-
tion of toolkit evaluation strategies is likely strengthened by 
our first-hand experience, it may also have introduced bias.  

CONCLUSIONS 
Research toolkits have fundamentally influenced and shaped 
the way interactive technology is built, and will continue to 
do so. Despite the impact and success of toolkits, evaluating 
them remains a challenge. This paper is a first attempt at clar-
ifying what evaluation methods are used, when they are ap-
propriate and how they are performed. We derived four eval-
uation types and associated techniques for HCI toolkits based 
on 68 toolkit papers. We hope our categorization and reflec-
tion helps strengthen methods for toolkit research and move 
technical HCI research forward. Data and other materials can 
be found at: https://github.com/davidledo/toolkit-evaluation. 
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