

Meta-GUI-Builders: Generating
Domain-specific Interface Builders
for Multi-Device User Interface Creation

ABSTRACT

Nowadays, there is a growing demand to design user

interfaces that run on many devices. However, existing

multi-device design approaches are not suitable for

domain experts, whose input can be invaluable to come

to a suitable user interface for a specific domain.

Existing techniques often require the manipulation of

high-level models and transformations which are

difficult to interpret and predict by a domain expert

without a technical background. We present Meta-GUI-

Builders, a new generation of graphical user interface

builder tools that allows domain experts to create

multi-device GUI designs themselves. These tools

automatically adapt their workspace to a specific

domain by encapsulating domain-specific elements in

the designer's tool palette. Engaging domain experts in

a multi-device design approach is a first step towards

creating aesthetic user interfaces that can be deployed

on many devices, a combination that is hard to achieve

with previous approaches.

ACM Classification Keywords

H5.2. Information interfaces and presentation:

User Interfaces – Graphical user interfaces, Prototyping

Copyright is held by the author/owner(s).

CHI 2008, April 5 – April 10, 2008, Florence, Italy

ACM 978-1-60558-012-8/08/04.

Kris Luyten

Hasselt University

transnationale Universiteit Limburg

Expertise Centre for Digital Media

Diepenbeek, Belgium

kris.luyten@uhasselt.be

Jan Meskens

Hasselt University

transnationale Universiteit Limburg

Expertise Centre for Digital Media

Diepenbeek, Belgium

jan.meskens@uhasselt.be

Jo Vermeulen

Hasselt University

transnationale Universiteit Limburg

Expertise Centre for Digital Media

Diepenbeek, Belgium

jo.vermeulen@uhasselt.be

Karin Coninx

Hasselt University

transnationale Universiteit Limburg

Expertise Centre for Digital Media

Diepenbeek, Belgium

karin.coninx@uhasselt.be

3189

Keywords

UIML, multi-device interface design, prototyping

INTRODUCTION

The input of a domain expert can be invaluable to

create an appropriate user interface for a specific

domain. Most of the current graphical user interface

(GUI) creation tools are geared toward a software

developer and are not suitable for a domain expert that

has no technical background. GUI builders such as the

form editor included in Microsoft Visual Studio

(http://msdn.microsoft.com/vstudio/) and the Eclipse

Visual Editor (http://www.eclipse.org/vep) focus on

integration with the underlying software instead of

translating domain concepts into a suitable user

interface presentation. Imagine building an advanced

piece of audio processing software that should be

deployed on multiple platforms: this would require a

domain expert to define the domain concepts that

should be reflected in the user interface presentation.

Currently, the software developer has to map these

domain concepts manually onto an appropriate

presentation in the final user interface. Moreover, this

mapping process has to be repeated for every target

platform on which the user interface will be deployed.

In this paper we describe an approach which allows for

focusing on designing a user interface from the

viewpoint of the domain concepts instead of the

software structure. Our method is independent of the

computing platform (amongst others the programming

language and end-user device) and smoothly integrates

the user interface with the functional core, even if these

are created by different experts as is often the case.

Underlying this idea is a new type of user interface

authoring tool: a meta user interface builder tool that

adapts its workspace according to a specific domain. A

visual builder tool is generated for the user interface

designer according to a domain vocabulary that defines

domain concepts for a certain problem domain. The

core language that is used to enable automatic

authoring tool generation is itself a meta-language: the

User Interface Markup Language (UIML) [7].

THE USER INTERFACE MARKUP LANGUAGE

UIML is a canonical XML-based user interface

description language that supports a custom naming

scheme according to the problem domain. A UIML

description expresses the structure, style, content and

behavior of a user interface independent of platform,

widget set and programming language. For this purpose

a mapping vocabulary containing mapping rules from

domain objects onto concrete representations is

defined. As such, this language is the cornerstone of

our approach: UIML itself specifies the different aspects

of a user interface that should be defined, but does not

dictate the vocabulary that is used to design the user

interface. The mapping vocabulary can be changed

according to the target domain.

We use the rendering engine Uiml.net [4] that

transforms a UIML document into a concrete working

user interface. Uiml.net is an open source

implementation that is suitable for rendering UIML 3.0

compliant user interface descriptions [7]. This

rendering engine will query a mapping vocabulary and

instantiate the appropriate widgets from the selected

widget set at run-time. UIML separates the user

interface specification from its concrete representation.

The concrete user interface can be automatically

<uiml>
 <interface>

 <structure>
 <part id="player" class="Container">
 <part id="current"

 class="Container">
 <part id="song_id" class="Song"/>

 <part id="controls" class="Timer"/>
 <part id="controls"

 class="PlayControls"/>
 </part>

 <part id="list" class="PlayList"/>
 </structure>

 <style>...</style>
 </interface>
 <peers>

 <presentation
 base="http://purl.org/uimlvocs

 /audio-simple.uiml"/>
 </peers>

</uiml>

Table 1: An example UIML document

describing an audio player

3190

adapted when another mapping vocabulary is used that

contains different mapping rules with other concrete

widgets. The Listing on this page shows an extract from

a UIML file that specifies the user interface for an audio

player, with at the bottom

of the example a reference

to the specific vocabulary

that should be used

(indicated by the <peers>

tag).

The figure on this page

shows a GUI builder whose

workspace has been

generated from a

specialized audio

vocabulary. The level of

abstraction that can be

used in the vocabulary is

not constrained: in this

example the objects

“timer”, “playlist” and “song” are used. Each domain

object is mapped onto a visual representation that can

be used to build a concrete user interface. A different

presentation for the same set of domain objects can be

obtained by replacing audio-simple.uiml with audio-

mobile.uiml for example.

 MAKING DOMAIN OBJECTS EXPLICIT

Some changes were made to the UIML standard to

have better support for the generation of domain-

specific GUI tools. Since the mapping vocabulary

contains a concrete representation for each domain

object, they can be presented directly in the GUI

Builder. However, the standard vocabulary only allows

mapping one domain object onto one widget class. Our

approach allows mapping a domain object onto a

composition of widgets or even a user interface pattern.

Typically the vocabulary encodes rules such as

PushButton → Gtk.Button indicating that a part of the

class PushButton in the UIML structure description (see

the example listing) should be mapped onto a Gtk

implementation of a button. Our extension allows to

specify rules such as DeliveryDates → { Gtk.List | {

Gtk.List, DateEntry → {Gtk.Calendar, PushButton}} }.

The curly brackets “{}” indicate a composition when

the delimiter is “,” or a choice when the delimeter is “|”.

This is encoded in an XML format in the vocabulary

which allows the mapping rules to be hierarchically

structured as shown in the example rule above. This

also implies that the level of abstraction supported by

the tool can differ. A “traditional” GUI Builder tool,

intended for a designer that is used to work with

regular design tools such as the Visual Studio Forms

Editor or Eclipse Visual Editor, can be generated from a

vocabulary which maps GUI domain objects (e.g. a

“Button”) onto concrete widgets (e.g. a Gtk.Button).

The toolbox would then consist of a collection of single

widgets that can be dropped onto a canvas. However,

the real value comes from creating a tool for other

domains by mapping domain concepts onto suitable

user interface patterns, e.g. a user interface design tool

for a “car navigation system” or for “audio software”.

Figure 2 shows a design tool generated from the audio-

simple vocabulary. The tool palette clearly shows some

iconic representations of domain objects that occur

within the domain of audio applications. The most

powerful property of this approach is that a vocabulary

that only provides a low degree of abstraction can

evolve into a vocabulary of a high degree of abstraction

as the designer gains more knowledge of the domain.

The figure on the next page provides a visual

3191

representation of the type of mappings realized in a

vocabulary.

GENERATION OF A DOMAIN-DEPENDENT

GUI BUILDER

GUI Builder tools typically allow designers to compose a

user interface by using drag-and-drop operations that

move objects from a toolbox into a graphical canvas.

The most common dialogs (be it integrated in a single

view or a multi-window view) are the toolbox, the

canvas, the property dialog and the tree view. The

toolbox contains a set of representations of domain

objects that can be dragged onto the canvas and their

properties can be changed in the properties dialog.

The above description of the different dialogs is identical

to the traditional structure of a GUI Builder tool.

However, both the toolbox and property dialog are

automatically generated from the domain vocabulary.

The other windows contain different views on the UIML

description of the user interface that is being designed.

Designers interact mainly with the canvas that provides

a concrete, graphical view on the user interface. All

changes on the canvas (e.g. resizing a widget) are

automatically reflected in the underlying UIML

description. This reveals another important advantage:

although the underlying language abstracts the user

interface away from its final platform or device, the

designer can still benefit from a concrete graphical view

on her/his design.

We have observed that many multi-platform tools were

hard to use since the gap between the mental model of

the designer and the presentation the tool offers was

too big. Most multi-platform tools do not present a

concrete view to the designer but rather abstract their

visualization. Examples of such tools are CanonSketch

[3], VisiXML [2] and Damask [1]. With CanonSketch the

designer can focus on content instead of presentation

since it provides an abstract iconic notation instead of a

concrete graphical prototyping environment and focus on

interactive aspects of the dialog being designed. Damask

focuses on early phases in the design process that

require a high level of creativity. VisiXML is a graphical

editor for designing mid-fidelity prototypes on top of the

Microsoft Visio environment and that can save the design

in a XML-based language that can also specify the user

interface at an abstract level like UIML. Although these

3192

approaches have their own benefits, we feel most

designers prefer to also have a concrete representation

during their design activities. This way they are able to

polish the user interface without having to imagine first

what the final user interface would look like [8], which

reduces the mental burden on the designer.

The user interface builder tool presents the domain

objects as a set of items in a tool palette from which the

designer can drag and drop items on a canvas. The

canvas will directly use the concrete user interface

representations as encoded in the vocabulary. This

allows the designer to use the concrete representations

for domain objects instead of the abstractions.

MULTI-PLATFORM DESIGN BY EXAMPLE

Since a concrete representation shows the user interface

for one particular situation, namely the screen size

shown by the tool builders' design canvas, we need a

more intelligent tool that can support a user interface

design for multiple situations. Our tool supports this by

allowing the designer to create multiple user interface

design examples for the same application. Imagine we

want to use an audio player which has a user interface

designed by our tool on many devices that have different

screen sizes. A designer can freely choose for which

screen sizes she or he provides alternative user interface

designs. Unlike most other approaches that try to

automate this process with one single user interface

specification, we support many user interface designs.

This means the designer has more control over the

presentation of the user interface on different platforms,

while the user interface design is still flexible enough to

be deployed on a wide range of other devices. Because

of the multiple examples the designer can provide, we

can ensure the user interfaces generated from the UIML

specification adhere as close as possible to the decisions

made during the design stage.

Two different techniques are used: first of all we can

take advantage of multiple mappings that are included in

the vocabulary and thus choose an alternative

presentation for the same domain. A second technique is

based on the multiple user interface design examples

that can be created as discussed in the previous

paragraph. The Uiml.net renderer is extended with a

user interface interpolation mechanism which can

combine the properties of two different user interface

designs and create a new user interface for another

screen size while maximizing the preservation of the

properties of the two example designs. The user

interface interpolation mechanism uses a set of rules to

decide which properties should be selected and adapted

for the new screen size. Each rule couples a user

interface property to a minimum and maximum screen

size within which the property is valid. The designer

specifies these rules which are later encoded in XML and

added to the UIML specification. The rules in the UIML

specification can be interpreted by our UIML renderer

and will select the appropriate properties according to

the screen size for which the renderer is generating a

final user interface.

At design-time, the designer can specify these rules for

several screen size intervals in the generated design

tool. Assume, for example, an audio player: when the

screen size reduces, it would be preferable to map the

playlist to a smaller component and to shrink the

visualization component. Other possible transformations

include resizing, replacing or removing user interface

elements. In our tool, a set of sliders indicate the screen

size intervals for which an example is valid. The effects

of changing the screen size intervals can be tested at

3193

design-time, since the user interface builder continuously

renders the user interface that is being designed with the

Uiml.net rendering engine.

DISCUSSION

We presented a Meta-GUI-builder tool that enables a

designer to design multi-device user interfaces for a

certain domain. The GUI builder tool is generated from a

domain vocabulary and as such can be used for different

problem domains. Furthermore, it considers a user

interface design as an example user interface for an

application using a specific screen size. Considering the

growing importance to deploy a user interface on

different devices, we want to point out the fact that there

is little or no designer intervention possible in current

design tools to accomplish this without the designer

losing controls over her or his design. Different examples

for different screen sizes can be created by our tool so

the user interface can be used for multiple devices with

different screen sizes. For the “intermediate” screen

sizes where there are no examples, an interpolation is

calculated between the next example for a larger screen

size and the next example for a smaller screen size.

Inspired by existing approaches such as Supple [5] and

Uniform [6], we seek to give the designer more power in

the design process in order to constrain the generated

designs to the examples given by the designer. Finally

we want to emphasize that both the extensible multi-

platform UIML renderer and the design tool are available

as free software from

http://research.edm.uhasselt.be/uiml.

Acknowledgments

Part of the research at EDM is funded by ERDF

(European Regional Development Fund), the Flemish

Government and the Flemish Interdisciplinary institute

for BroadBand Technology (IBBT). The AMASS++

(Advanced Multimedia Alignment and Structured

Summarization) project IWT 060051 is directly funded

by the IWT (Flemish subsidy organization).

REFERENCES
[1] James Lin and James A. Landay. "Damask: A Tool

for Early-Stage Design and Prototyping of Multi-

Device User Interfaces." In Proceedings of The 8th

International Conference on Distributed Multimedia

Systems (2002 International Workshop on Visual

Computing), San Francisco, 2002, pp. 573-580.

[2] Adrien Coyette and Jean Vanderdonckt. A Sketching

Tool for Designing Anyuser, Anyplatform, Anywhere

User Interfaces, Proc. of 10th IFIP TC 13 Int. Conf.

on Human-Computer Interaction Interact’2005,

Italy, Rome, 2005, pp. 550-564.

[3] Campos, P. and Nunes, N. Canonsketch: a User-

Centered Tool for Canonical Abstract Prototyping. In

Proceedings of DSV-IS'2004, 11th International

Workshop on Design, Specification and Verification

of Interactive Systems, 2004.

[4] Kris Luyten and Karin Coninx. Uiml.net: an Open

Uiml Renderer for the .Net Framework, CADUI'2004,

Funchal, Madeira Island (Portugal), 2004

[5] Krzysztof Gajos and Daniel S. Weld. SUPPLE:

Automatically Generating User Interfaces. In

Proceedings of IUI'04. Funchal, Portugal, 2004

[6] Jeffrey Nichols, Brad A. Myers and Brandon

Rothrock. "UNIFORM: Automatically Generating

Consistent Remote Control User Interfaces," In

Proceedings of CHI'2006. pp. 611-620.Montreal,

Canada, April 22-26, 2006.

[7] Marc Abrams and James Helms. User Interface

Markup Language (UIML) Specification version 3.1.

Technical report, Oasis UIML TC, 2004.

[8] Luca Cardelli. Building User Interfaces by Direct

Manipulation, ACM Symposium on User Interface

Software and Technology, 152-166, 1988

3194

