Constraint Adaptability of Multi-Device User Interfaces

Kris Luyten Jo Vermeulen Karin Coninx

Hasselt University — transnationale Universiteit Limburg
Expertise Centre for Digital Media — IBBT
Wetenschapspark, 2
B-3590 Diepenbeek (Belgium)

{kris.luyten,jo.vermeulen, karin.coninx } @uhasselt.be

ABSTRACT

Methods to support the creation of multi-device user inter-
faces typically use some type of abstraction of the user in-
terface design. To retrieve the final user interface from the
abstraction a transformation will be applied that specializes
the abstraction for a particular target platform. The User
Interface Markup Language (UIML) offers a way to create
multi-device user interface descriptions while maintaining
the consistency of certain aspects of a user interface across
platforms. We extended the UIML language with support
for layout constraints. Designers can create layout templates
based on constraints that limit the ways a user interface can
rearrange across platforms. This results in a higher degree
of consistency and reusability of interface designs.

THE USER INTERFACE MARKUP LANGUAGE (UIML)
The UIML specification [2] is a high-level canonical markup
language to describe the structure, style, content and behav-
ior of a user interface. The declarative nature of UIML al-
lows a clear separation of the user interface, its content, the
mapping of its abstract concepts onto concrete widgets and
the application logic. UIML’s separation of concerns enables
reuse of the user interface and promotes consistency across
different platforms.

UIML does not contain metaphor-specific tags (e.g. <window>),

but only generic tags (e.g. <part>, <property>, ...).
A set of abstractions can be defined in a vocabulary and
allows the designer to specify a user interface by referring
to these abstractions. The vocabulary defines how abstrac-
tions can be translated into a concrete presentation. This is
a typical example of an interface being specified in terms
of abstract interaction objects which will be mapped onto
concrete interaction objects afterward [7]. Nevertheless, it
is challenging to choose the set of abstractions defined in a
UIML vocabulary so a wide range of different platforms can
be supported. Since these are specified separately, UIML
is extendable to new devices and UI metaphors, when they

become available. Several levels of abstraction can be sup-
ported by UIML.

An UIML document exists of several parts [1] that are shown
in figure 1. Together they make up the Meta-Interface Model

Vocabulary UIML document

Interface

Peers
Structure

Logic

Style

Presentation
Content

Behavior

Figure 1. The UIML Meta-Interface Model
(MIM).

Interface describes four parts of the user interface: struc-
ture, style, content and behavior. The structure describes
the “hierarchy” of the user interface. It defines the different
parts that are contained in the user interface. Style describes
properties of the parts defined in the structure. This allows to
change properties of the interactors like text, color, font, etc.
The content component separates the content of the interface
(e.g. the list of items that has to appear in a list presentation)
of the other parts. The behavior of a UIML document de-
fines rules with actions that are triggered when some condi-
tion is met. Some kind of event mechanism is offered to the
user interface designer this way.

Peers defines mappings to entities external to the UIML doc-
ument, and is divided into the presentation and logic. Pre-
sentation contains the mapping with the concrete user in-
terface toolkit. It defines a “vocabulary” to be used with a
UIML document. Finally, the logic component defines how
to bind the user interface with the application logic.

Listing 1 shows the structure and style components of an
example UIML document. For more details about the UIML
language, we refer to the specification [1].

Listing 1. Structure and style section for a simple dictio-
nary user interface

< structure >
<part class="Frame” id="OuterFrame” >
<part class="HBox” id="hl1">
<part class="VBox” id="vI1">
<part class="Label” id="TermLabel” />
<part class="Combo” id="TermList” />
</[part>
</part>
</part>
</structure >
<style>
<property part —name="OuterFrame” name="label”>
Simple Dictionary </property >
<property part —name="TermLabel” name="text”>
Pick a term:</property >
</style>

We have developed a multi-device UIML renderer for the
.Net platform: Uiml.net [6]. Our renderer can be deployed
on desktop computers, tablet PCs, digital television and on
mobile devices such as PDA’s, Mobile Phones... It works on
different implementations of the .Net framework (The Mi-
crosoft standard framework, the Microsoft Compact frame-
work and Mono'), by consequence it can be considered plat-
form independent. This renderer enables us to create one
user interface design in a high-level XML-based language
and reuse it on different platforms. The renderer takes ad-
vantage of the widget sets that are available on the platform
to transform the UIML document into the final user inter-
face.

UIML enables reuse of large parts of the user interface
across different platforms. However, there is no abstraction
for the layout of a user interface, resulting in UIML doc-
uments that can only be reused for a limited set of target
devices. This is equivalent to what can be achieved with a
generic vocabulary for the same family of devices, as was
described by Ali et al. in [3]. Although the language also
enforces consistency in various manners (a detailed discus-
sion will follow in the next section), the absence of a layout
abstraction causes inconsistencies in the layout of the user
interface and in the part hierarchy.

SUPPORT FOR CONSISTENCY IN UIML

The structure section in a UIML document essentially de-
fines the containment hierarchy. Although this should
mainly stay the same for a wide range of devices, the same
hierarchy can not be reused for more extreme conditions
such as very small screens or multiple screens. In practice
the structure specification also contains widget-set specific
layout information. This results in multiple alternative struc-
ture specifications for the same user interface to keep them
consistent for different widget-sets on different devices.

The separation of style and structure allows to decouple the
user interface structure from its visual presentation. Differ-
ent visual representations for the user interface elements can
be provided which do not affect the user interface structure:

"http://mono-project.com/

the structure is kept consistent independent of changes in ap-
pearance.

The decoupling of the content from the other parts of the
interface, makes it easy to update one without altering the
others [3]. The content of a user interface has to be speci-
fied only once and can be referenced many times by different
platform-specific versions of the same interface. This elimi-
nates inconsistencies between these different versions.

The behavior element consists of a sequence of rules, each
with a condition and a list of actions. A condition can hold
when an event fires. Events are independent of the supported
widget sets and use the same class and name mapping con-
cepts as the mapping mechanism of parts. This ensures that
we can use the same event class for the user interface on
different platforms. This way, UIML guarantees that the in-
teraction of each platform-specific version of the user inter-
face behaves consistently. The event class is in turn mapped
onto the specific type of event used by the target platform.
For instance, we could define a selection event class, which
gets mapped to an OnC1lick event for direct manipulation
interfaces and to an onfocus event for a speech interface.

The logic component describes the functionality of the ap-
plication while hiding the application itself and the commu-
nication between the user interface and the application with
it. UIML abstracts the way the application logic can be ad-
dressed from within the user interface. UIML enables a con-
sistent and platform-independent binding between the user
interface and the application logic since this abstraction can
be reused for other UIML-based user interfaces.

DEVICE-INDEPENDENT UIML (DI-UIML)

UIML achieves abstraction in many ways. The specification
of user interface elements, interaction, content and the appli-
cation logic are all platform-independent. However, UIML
has no support for plastic layout management, which results
in platform-specific layout adjustments for each of the target
devices. Our solution supports a consistent layout in a wide
range of circumstances, while still being flexible enough to
adjust to extreme conditions.

For this purpose, Device-Independent UIML (DI-UIML) ex-
tends standard UIML with a high-level way to describe the
graphical user interface layout. The designer is no longer
bothered with widget-set dependent details. Our approach is
based on the combination of spatial constraints and a con-
straint solving algorithm. The interface designer specifies
the layout by defining constraints on the user interface com-
ponents, such as buttonA left-of labelB. Afterwards, the con-
straint solver tries to find a solution that adheres to these
constraints. Constraints are resolved on the level of the ab-
stract interaction objects, so are independent of the concrete
representation of the widgets.

Constraints allow us to specify the layout in a declarative
manner and integrate smoothly with UIML. The designer
can focus only on what is the desired layout, rather than how
this layout is to be achieved. Furthermore, constraints allow

partial specification of the layout, which can be combined
with other partial specifications in a predictable way [5].
This is useful in our case to define the layout at several lev-
els, taking advantage of an interface containment hierarchy
(e.g. the parts in the structure section of listing 1 specify
a containment hierarchy). For example, we can define that
container selection is left-of container content. The selec-
tion and content containers can then each on its own specify
the layout of their children. When a change in this layout
requires the containers to grow, shrink or move, the upper-
level layout constraints will be reevaluated. This allows us
to define generic layout patterns. These define the layout
of a number of containers, which can afterwards be filled in
with a specific widget hierarchy using its own layout speci-
fication.

We developed Cassowary.net, a port of the Cassowary con-
straint solving toolkit [4] to the .NET platform. This solver
is used by our UIML renderer to realize the specified layout
and maintain a consistent layout of the user interface across
devices.

USER INTERFACE CREATION WITH DI-UIML

Figure 2 shows the Rhythmbox? interface redone using
UIML. The interface can now be used on different platforms
and with different screen sizes (figure 2). Before, the de-
signer could reuse most of the UIML document for different
platforms, except the layout specification and some changes
in the structure specification. Our solution solves this prob-
lem and makes it possible to reuse the interface design with
different widget sets for different screen sizes without man-
ual intervention. If other behavior is required, a designer can
add or remove a constraint to obtain the envisioned effect,
and is no longer bothered by any platform-specific problems
while designing the interface.

Listing 2 shows how the designer (or design tool) can use
the new <layout> tag in a UIML document. A layout
pattern is a set of spatial constraints that can be applied to a
part subtree. In listing 2 the GTK VBox layout pattern (cfr.
listing 1) can be obtained by specifying that Part! is placed
above Part2 and that the parts are left-aligned. Constraints
can be specified either directly in the UIML document, or
included by referring to an external layout pattern by using
a predefined alias. This can be compared with the usage of
CSS for XHTML, but is not limited to a particular widget
set nor dependent on a web browser.

Listing 2. Specifying the layout in a UIML document

<layout part —name="v11”>
<d—param name="Part1” class="x" />
<d—param name="Part2” class="Choice” />
< constraint >
<alias name="above”>Part1,Part2</alias>
</ constraint >
< constraint >
<rule>Partl. left=Part2. left </rule>
</ constraint >
</layout>

nttp://www.gnome.org/projects/rhythmbox/

The layout template presented in listing 2 is a parametrized
layout template. A layout template can be applied to a part
hierarchy by inserting it as a child of a part hierarchy. Notice
the class attribute defines the required type of interactor.
At the moment of writing we have full support for constraint-
based layout management in Uiml.net, the parametrized lay-
out templates are still work in progress however. This exten-
sion to the UIML language allows to achieve a greater level
of consistency and reuse while reaching a higher level of ab-
straction in the user interface specification. Listing 3 shows
how a template can be applied onto a part hierarchy. Notice
the part class Combo will be matched by the Choice from
the layout template in listing 2, since Combo is a possible in-
stantiation for the Choice class according to the vocabulary
that is used. More details about this mapping scheme can be
found in the future work section.

Listing 3. Applying a layout template on listing 1

<part class="Frame” id="OuterFrame”>
<layout id="v11”>
<part class="Label” id="TermLabel”/>
<part class="Combo” id="TermList”/>
</layout>

Previously, designers had to specify a platform-specific lay-
out for every instantiation of the user interface. This process
relied on the careful and precise work of the designer in or-
der to keep the different layouts consistent. Furthermore,
this process introduced a lot of work, because for every new
target platform, the layout had to be almost completely re-
designed. One could even wonder if using an abstract user
interface specification like UIML was advantageous, since
there was still a large part of the interface that had to be
rewritten for every platform.

Our method enables designers to create new and reuse ex-
isting layout templates. Layout templates support consistent
layouts for multi-device user interfaces. Under most con-
ditions this layout can be kept consistent across platforms.
When more extreme circumstances arise (e.g. the interface
is deployed on a PDA, a cellphone or even distributed among
several screens), the layout can adapt to the new environment
by remapping abstract interactors to more basic concrete in-
teractors and ignoring low-priority layout constraints.

FUTURE WORK

The current UIML vocabulary uses a one-to-one mapping of
abstract interaction objects (AIOs) onto concrete interaction
objects (CIOs). Unfortunately, this is not very flexible. We
have been investigating a rule-based extension to the map-
ping mechanism, based on XSLT’s choice element. This al-
lows to select an appropriate concrete interactor for a given
abstract interactor, according to a particular context of use.
We call this method 7-to-N mapping.

These context-sensitive selection rules allow a more signifi-
cant adaption of the user interface to the target platform. A
rule that states “If the screen space is too small for the pre-
ferred user interface, map the abstract range widget to a spin

= wmlTunes. =) /& | uimITunes
r

[Prev || Plav |[Next]

{) uimITunes Pl B3R)
Controls | Info | Se["prey || Play || Next Cﬂnlm\s‘lr\fﬂ|5eﬂmgs|

Mﬁm MILLIONAIRE - 'mona high ~ 0:37 of 320 G’D

& a7 9 uimiTunes & dxas 3
MILLIONAIRE - I'm on a high 0:37 of 3:20
.0 .

Wieezer We are all on dnugs Rock
Gorilaz are Pop

Y Hof van Commerce Jaloes Hip Hop
Stash Carvingthe pan Soft Rock

Supergrass St. Petersburg Atemative
Woodface Something to break Unknown
Interpol Narc Akemaive
Gabage Run baby run Fop
Gabriel Rios Unrock: Latn
Aosyrthe Minded Wiy heroics. part one: Unknown

Depeche Mode Precious
The Rasmus Nofear Fop Rock v

(a) Desktop

- Admiral Fre... Lucky one Rock i
Source Vieezer \We are al... Rock Millionaire. I'mona.. Rock m
4—‘ - ,7 Oasis The impo... Alternative
EENES) Library Admiral Fre... Luckyone Rock

Source | [t Tile Genre [l | Source 4 - -
Radio Coldplay Focyou Akemative Radio L‘mlrn\s‘ Im| Semngs| ;'“. uimiTunes oF ox 8:28 0
Lbray Janez Dedt Dezp Punk Rock A
Zomi Ifeel anght Atemative Gy [Volume |
Green Day Wake me up when September ends Punk Rock Artist | Title | Gente =
tus et ;dar\‘!fd 7'?“29“! \ " ﬁém:‘ve Franz Ferdi... Dovyouw... Alternative
iser Chiefs veryday |love U less and less emative y
Franz Ferdnand Do you want to Atemative EVSTQF’“h:f B g“;‘t‘f““ &“ct Controls. ‘ Infa | Settings |
Systemof a Down Question Rock o0 Fighters Best of you Roc
_ -
o = Toevinte .. Dol Rocc |of [ASE [T Jeme
reade Fre P Rebelien fizs) Aremative Arcade Fire Rehbellion ... Alternative Franz Ferdi... Do you ... Alternative
I on a high Fock Millionaire Imona.. Rock [T |Svstem of &... Question Rock |
Pammstein Ofine dich Pock Remmstein ~ Ohnedich Rock Foo Fighters Best of you Rock
asis The importance of being ide Akemaiive € . The Whit My Doorbell Rock a
Admiral Freebee Lucky one Rock Oasis The impo... Alternative e € . My Loore OCH =

Arcade Fire Rehellion ... Alternative

¥| |Remmstein Chnedich Rock

Gorillaz Care Pap

E‘A Weezer We are al... Rock -
Gorillaz Dare Pop i
Source | Library

(b) PDA

Figure 2. UIML-based Rhythmbox interface rendered for different platforms.

box instead of a slider.” would result in a user interface that
utilizes the slider widget when there is enough screen space
(e.g. on a desktop PC), and would otherwise (e.g. on a PDA)
use the more compact spin box. Under normal conditions
rich CIOs are used, while under more extreme conditions (in
this example, a small amount of screen space) we fall back
on basic CIOs. In contrast with other approaches, this ap-
proach requires the designer to specify her preferences and
excludes unexpected adaptations. This is often required by
designers and gives them the final decision over the final ap-
pearance of the user interface.

CONCLUSIONS

The User Interface Markup Language offers the user inter-
face designer a means to create device independent interface
designs. The separation of concerns (structure, style, behav-
ior and content) allows to keep certain aspects of the user
interface consistent across devices, while other aspects can
differ according to the target device, toolkit or user. How-
ever, UIML lacks an abstraction for the layout of the user in-
terface resulting in UIML documents that can only be reused
for a limited set of target devices.

In this position paper we addressed how DI-UIML, an ex-
tension of UIML, supports the creation of consistent multi-
device user interfaces. The use of spatial layout constraints
leads to user interfaces that adapt according to the given
screen space and preserve the same structure and style for
a wide range of display resolutions. However, in more ex-
treme circumstances, such as very small displays or multiple
displays, the user interface can have an inconsistent repre-
sentation while still being valid according to the constraints.
Since the designer can add or remove constraints and define
custom layout patterns with these constraints, the limits for
consistency are exactly defined for the range of screen sizes
for which the constraint solver can find a solution.

The work presented here is available as free software and can

befoundathttp://sf.net/projects/uimldotnet/.

The Uiml.net renderer for UIML and DI-UIML can be ob-

tained here, as well as the Cassowary.net library that is used
to solve the spatial layout constraints included in DI-UIML.

ACKNOWLEDGMENTS

Part of the research at EDM is funded by ERDF (European Fund for Re-
gional Development), the Flemish Government and the Flemish Interdisci-
plinary institute for Broadband technology (IBBT).

REFERENCES

1. Marc Abrams and James Helms. User Interface Markup
Language (UIML) Specification version 3.1. Technical
report, Oasis UIML TC, 2004.

2. Marc Abrams, Constantinos Phanouriou, Alan L.
Batongbacal, Stephen M. Williams, and Jonathan E.
Shuster. UIML: An Appliance-Independent XML User
Interface Language. WWWS / Computer Networks, 1999.

3. Mir Farooq Ali, Manuel A. Pérez-Quidnes, Marc
Abrams, and Eric Shell. Building Multi-Platform User
Interfaces with UIML. In Christophe Kolski and Jean
Vanderdonckt, editors, CADUI 2002, volume 3, pages
255-266. Kluwer Academic, 2002.

4. Greg J. Badros, Alan Borning, and Peter J. Stuckey. The
cassowary linear arithmetic constraint solving algorithm.

ACM Trans. Computer-Human Interaction,
8(4):267-306, 2001.

5. Greg J. Badros, Alan Borning, Kim Marriott, and Peter
J. Stuckey. Constraint cascading style sheets for the web.
In UIST °99: 12th annual ACM symposium on User
interface software and technology, pages 73—82, 1999.

6. Kris Luyten and Karin Coninx. Uiml.net: an Open Uiml
Renderer for the .Net Framework. In Computer-Aided
Design of User Interfaces, 2004.

7. Jean Vanderdonckt and Francois Bodart. Encapsulating
Knowledge for Intelligent Automatic Interaction Objects
Selection. In ACM Conference on Human Aspects in
Computing Systems InterCHI’93, 1993.

