
Gummy for Multi-Platform User Interface Designs:
Shape me, Multiply me, Fix me, Use me

Jan Meskens Jo Vermeulen Kris Luyten Karin Coninx

Hasselt University – tUL – IBBT
Expertise Centre for Digital Media

Wetenschapspark 2, B-3590 Diepenbeek, Belgium
{jan.meskens,jo.vermeulen,kris.luyten,karin.coninx}@uhasselt.be

ABSTRACT
Designers still often create a specific user interface for ev-
ery target platform they wish to support, which is time-
consuming and error-prone. The need for a multi-platform
user interface design approach that designers feel comfort-
able with increases as people expect their applications and
data to go where they go. We present Gummy, a multi-
platform graphical user interface builder that can generate
an initial design for a new platform by adapting and combin-
ing features of existing user interfaces created for the same
application. Our approach makes it easy to target new plat-
forms and keep all user interfaces consistent without requir-
ing designers to considerably change their work practice.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User
Interfaces – Graphical user interfaces, Prototyping

Keywords
design tools, multi-platform design, GUI builder, UIML

1. INTRODUCTION
There is an increasing need for applications that are avail-
able on multiple devices. Today, people tend to read their
email or browse the web using their mobile phones or game
consoles. This tendency will increase with the move to-
wards ubiquitous computing where users are supposed to
have seamless access to applications regardless of their where-
abouts or the computing device at hand [20]. People need
more means to access their information and applications
than just a regular desktop computer. Applications that
need to be available on any device at the user’s disposal
should be able to deploy a suitable user interface (UI) on
each of these computing platforms.

We define a computing platform as the combination of a
hardware device, an operating system and user interface

toolkit. Designing a user interface for different computing
platforms is far from simple. Each computing platform has
its own characteristics such as the device’s form factor, the
appropriate interaction metaphors and the supported user
interface toolkit. In current practice, designers often cre-
ate a specific user interface for every target platform. Even
though some technologies are shared between a number of
devices (e.g. Java ME1 or a modern web browser), usually
each device still requires specific adjustment. There is a
high cost incurred in adding a new target device and keep-
ing all user interfaces consistent using manual approaches.
Furthermore, there is no clear separation between the user
interface and the underlying application logic.

A common solution to these issues is to specify the user inter-
face in an abstract way by means of high-level models such as
task models and dialogue models [9]. The platform-specific
user interfaces are then generated automatically from this
abstract description. The user interface has to be speci-
fied only once, which makes it easier to make changes or
add a new target platform. In spite of the fact that these
tools solve most of the problems with the manual approach,
the resulting user interfaces usually still lack the aesthetic
quality of a manually designed interface. Furthermore, the
design process is not intuitive since designers have to master
a new language to specify the high-level models and cannot
accurately predict what the resulting user interface will look
like [18].

Gummy combines the benefits of both the manual approach
and model-based techniques. Designers create and perform
prototyping of a multi-platform graphical user interface (GUI)
in the same way as they do when dealing with traditional
GUI builders such as Microsoft Visual Studio2 and Net-
beans3. Gummy builds a platform-independent represen-
tation of the user interface and updates it as the designer
makes changes. This allows for an abstract specification of
the user interface while keeping the design process intuitive
and familiar. An abstract user interface specification avoids
a tight interweaving of application and presentation logic.

Gummy can generate an initial design for a new platform
from existing user interfaces created for the same applica-

1http://java.sun.com/javame/
2http://msdn.microsoft.com/vstudio/
3http://www.netbeans.org/

jvermeulen
Text Box
© ACM, 2008. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proc. AVI'08, 28-30 May, 2008, Napoli, Italy.



Figure 1: The three main dialogues of the Gummy tool

tion but for other platforms. This makes it it easy to target
new platforms and keep all user interfaces consistent with-
out requiring designers to considerably change their work
practice. Since designers work with the concrete user inter-
face, Gummy allows for a true WYSIWYG4 multi-platform
user interface design process.

The main contributions we present in this paper are:

• a multi-platform design approach to creating user in-
terfaces incrementally for a wide range of computing
platforms while still working on a concrete level (Sect. 3).

• Gummy, a generic multi-platform GUI builder to sup-
port the aforementioned design approach. This tool
automatically adapts its workspace according to the
considered target platform (Sect. 4). A preliminary
user study with Gummy indicated that the incremental
design approach was faster than starting from scratch
for each computing platform (Sect. 5).

2. BACKGROUND AND MOTIVATION
We feel that most designers prefer to have a concrete rep-
resentation during their design activities, whether they are
working on a single or a multi-platform user interface. This
avoids their having to imagine what the final user interface
would look like. We can thus conclude that working on a
concrete representation reduces the mental burden on the
designer [2, 18].

We structured Gummy in a similar way to traditional GUI
builders in order to allow designers to reuse their knowledge

4What You See Is What You Get

of single-platform user interface design tools. Fig. 1 shows
the main components of the Gummy interface: there is a
toolbox showing the available user interface elements, a can-
vas to build the actual user interface and a properties panel
to change the properties of the user interface elements on
the canvas.

The resemblance to traditional GUI builders also reflects one
of the main strengths of our approach: the abstractions used
to support multi-platform user interface design are carefully
hidden from the designer. This is contrary to existing multi-
platform design tools that often expose these abstractions
to the designer. In the remainder of this section we give
some details about the underlying abstract language that
Gummy uses to represent multi-platform user interfaces and
how they are presented to the designer.

The underlying language used in Gummy is the User In-
terface Markup Language (UIML) [14], an XML language
that contains a platform-independent user interface descrip-
tion on the one hand and a mapping vocabulary on the
other hand. While the former is used to describe the struc-
ture, style, content and behaviour of a user interface using
platform-independent terms, the latter contains mappings
of these terms onto concrete widgets. Fig. 2 gives an ex-
ample of a mapping vocabulary. The traditional rendering
step is to translate the platform-independent user interface
description into a concrete user interface using these map-
pings. For the implementation of Gummy the opposite was
done: the concrete representations were used in the tool and
were internally mapped onto the associated abstractions.
The designer works with the concrete graphical representa-
tions, avoiding the XML language, while the tool maintains
a synchronised platform-independent UIML document for



Figure 2: A UIML vocabulary relates generic terms to concrete representations

the concrete design.

3. MULTI-PLATFORM DESIGN APPROACH
Now to delve deeper into the design process supported by
Gummy, as depicted in Fig. 3. The design process is similar
to that of traditional GUI builder tools, but includes an ad-
ditional iteration to refine a design for a specific computing
platform.

The procedure to create a user interface design for different
platforms can be described in the following five steps:

Figure 3: The approach presented in this paper to
design multi-platform user interfaces

1. As a first step, the user interface designer specifies the
target platform for which they want to design a user
interface. Some possible platforms are a mobile phone
with the Compact .NET framework, a digital TV with
DVB-MHP, etc.

2. According to the specified platform, Gummy automat-
ically loads a GUI builder workspace that is fully equipped
for designing user interfaces for this platform.

3. From a set of existing user interfaces that are all cre-
ated for the same application, Gummy automatically
generates an initial design for the selected target plat-
form. For this generation process, Gummy relies on a
transformation engine component. When there are no
existing user interfaces available, this step generates
an empty user interface for the selected platform. The
specifics of the underlying algorithm to perform this
transformation is not the main focus of this paper.

4. The designer can refine the initial user interface until
it fits their vision. The resulting design is then added
to the set of existing user interface designs where it
may serve as an input for the transformation engine.
After this step, a new iteration is started.

5. When the designer is finished, Gummy exports all de-
signs as one or more UIML user interface descriptions.
Notice that platform-specific user interface descriptions
might be needed to achieve aesthetic quality on every
target platform. These UIML descriptions can then
be rendered on the target platforms. In this paper
a UIML renderer is defined as a component that can
transform a UIML description into a working user in-
terface.

4. A GENERIC MULTI-PLATFORM GUI
BUILDER

Three aspects of Gummy’s architecture account for its generic
nature:

• a pluggable rendering architecture which makes it pos-
sible to integrate any UIML renderer into Gummy with
minimal changes;

• UIML vocabularies to automatically adapt Gummy’s
workspace to a certain platform;



• a transformation engine that generates initial designs
for new platforms based on existing designs for other
platforms.

4.1 Pluggable Rendering Architecture
When a designer alters a user interface design in Gummy,
the underlying UIML description is automatically updated
and visual feedback is provided immediately. Gummy relies
on an external UIML renderer to provide the visual represen-
tation of this UIML description. Different UIML renderers
can be integrated into the tool as plugins.

The communication between Gummy and a UIML renderer
can be viewed as a set of inputs from Gummy to the ren-
derer on the one hand and a set of outputs from the renderer
to Gummy on the other hand. Gummy will feed UIML de-
scriptions of parts of the user interface into the renderer. In
turn, the renderer will parse these UIML descriptions and
render them as off-screen bitmaps. Gummy then uses these
bitmaps to visualise the underlying UIML descriptions.

In theory, every renderer that respects the communication
protocol described above can be plugged into Gummy. How-
ever, renderers might be written in other programming lan-
guages, run only on specific operating systems (e.g. embed-
ded systems) or have limited communication possibilities. It
would be inflexible to require Gummy to know how to com-
municate with each of these renderers. To solve this prob-
lem, an additional layer of abstraction was added between
Gummy and the different UIML renderers. Proxy objects act
as local placeholders for the UIML renderers and hide the
communication details from Gummy, as shown in Fig. 4.
Every proxy object behaves like a regular UIML renderer
but just forwards the rendering inputs to an actual renderer
which can be located on any computing device. In turn,
the bitmaps produced by the renderer are sent back to the
proxy which finally delivers them to the design environment.
Proxy objects are free to choose how they communicate with
their UIML renderer, e.g. through socket communication,
SOAP, etc. Gummy’s proxy objects are based on the Re-
mote Proxy and Adapter design patterns [13].

4.2 Adapting the Gummy Workspace
In the Gummy tool, the designer needs to specify the plat-
form for which they want to design a user interface. Gummy
then automatically loads a UIML vocabulary designed for
the selected platform. At the same time, it looks for a suit-
able UIML renderer for this vocabulary. In order to find a
suitable renderer, all the available proxy objects need to be
placed in a predefined location together with a configuration
file that connects each renderer to a set of vocabularies that
it can handle.

Once the vocabulary and renderer are loaded, Gummy adapts
its workspace to be fully ready for designing user interfaces
for the selected platform. This platform-specific workspace
will have a toolbox dialogue that contains only those user in-
terface elements that are available for the selected platform.
In order to generate this toolbox automatically, Gummy uses
the relation between generic terms and concrete user inter-
face elements (see Fig. 2) described in the loaded UIML
vocabulary. Small versions of all the concrete widgets that
are described in the vocabulary are displayed as items in the

Figure 4: Existing UIML renderers can be easily
integrated into Gummy using proxy objects

toolbox. The designer can then drag and drop these items
onto the canvas. While designers manipulate concrete user
interface representations on the canvas, Gummy maintains
a UIML description of the user interface in the background.
Every time a designer repositions or resizes a widget through
direct manipulation or modifies a property of a widget in the
properties panel, the corresponding UIML description is up-
dated and forwarded to the external renderer to update the
view.

4.3 The Transformation Engine
Gummy allows the designer to create several user interface
designs for the same application. Each design corresponds
to a specific target platform. During this process, a trans-
formation engine is used to generate initial designs for new
platforms based on the previously designed user interfaces.
Designers can also simply copy one of the previous designs.

To prove the design approach that was introduced in Sect. 3,
a basic transformation engine was integrated into Gummy.
This engine transforms existing designs into a new design
based on the available screen size, as shown graphically in
Fig. 5: Two existing interface designs I1 and I2, both rep-
resenting the same application (a card game) but for two
specific screen sizes, are used by the transformation engine
to generate an initial design for a new screen size Ix.

The underlying algorithm used by this engine will not be
discussed into detail since it is not the main focus of this pa-
per. The transformation engine uses a set of rules to decide
which properties (e.g. a widget’s size or position) of the al-
ready created user interfaces should be selected and adapted
according to the available screen size on the target platform.
Each rule relates a property with a minimum and maximum
screen size between which it is valid. For each property, the
designer specifies these rules by manipulating a set of sliders
that appear next to the design canvas as shown in Fig. 6.
These sliders represent the vertical and horizontal screen size
extrema within which the selected property is valid. Speci-
fying these rules from scratch is a time-consuming activity.



Figure 5: An initial interface for screen space Ix can be generated with the rule-based transformation engine.

Therefore, Gummy automatically generates initial rules by
using a heuristic based on the assumption that a compo-
nent may only be displayed when it fits within the available
screen space. The conceptual user study indicated that de-
signers were faster when using the initial designs generated
by this engine than starting from scratch for each computing
platform (see Sect. 5.1).

Figure 6: Two mail client user interfaces which are
used as input for the rule based transformation en-
gine

5. ANALYSIS
5.1 Conceptual User Study
To get an idea about the usability of the approach a small
experiment was organized to assess the user’s effectiveness
at creating a user interface for multiple computing platforms
with Gummy. Ten test participants with various computer
skills were recruited. Six of them were colleagues with good

programming skills and a lot of experience with traditional
GUI design tools. Four participants did not have a computer
science background, of whom three did have experience with
graphical drawing tools. The diverse test audience allowed
examination of the question of whether the tool would re-
quire a certain technical way of thinking. In order to instruct
all subjects in the same way before they started, they were
provided with a written tutorial explaining the basic work-
ings of our tool.

The test consisted of two parts. The first part of the test
evaluated the ease of starting from an initial design for a new
platform versus creating one from scratch. The test partic-
ipants were divided into two groups with the same propor-
tion of technical and non-technical people. Both groups had
to arrive at a predefined user interface for a new platform.
The first group had to create this user interface from scratch
whereas the second one was allowed to base their user inter-
face on the initial design generated by the transformation
engine. By performing a one-way analysis of variance, it
was determined that the subjects who were able to use the
initial design were significantly faster in obtaining the de-
sired user interface than the members of the other group
(F1,8 = 15.935, p < 0.005).

In the second part of the experiment, the participants were
asked to manipulate the transformation rules in order to
obtain a predefined initial design for a new platform. Sub-
jects rated the difficulty of this assignment on a Likert scale
from very easy to very hard. A Spearman rho analysis in-
dicated that there was a negative correlation between the
programming experience of the test subjects and the per-
ceived difficulty of the task (p < 0.05). This suggests that
customising transformation rules (see Sect. 4.3) is not very
intuitive for non-programmers. However, this does not inval-
idate the multi-platform design approach presented in this
paper. The first part of the experiment gave an indication
that changes to the transformation rules were usually not
necessary. A more intuitive way of specifying transforma-
tions could resolve this issue.



5.2 Evaluation of Effectiveness
As was pointed out by Olsen [6], usability testing in its tradi-
tional form is rarely suitable for evaluating UI architectures,
toolkits and design tools. Olsen argues that the three ba-
sic assumptions of usability testing, (1) minimal required
training; (2) a standardised task to compare; and (3) be-
ing able to finish a test in short period of time, are rarely
met by these systems. For Gummy, at least the first two
assumptions are not met. Because of this, the evaluation
was extended with an analysis based on Olsen’s evaluation
framework.

This framework uses a number of attributes of good tools
and methods to demonstrate that a particular tool supports
them. The ones considered for Gummy are:

• reduce solution viscosity with flexibility and expressive
match;

• simplify interconnection and allow easy combinations
to achieve power in combination;

5.2.1 Reduce solution viscosity
This implies that a good tool should foster good design by
reducing the effort required to iterate on many possible so-
lutions [6].

A tool is flexible if it allows the making of rapid design
changes that can then be evaluated by users [6]. Since
Gummy allows designers to work on a concrete level they
can easily make changes to the user interface using direct
manipulation. These changes can be tested immediately by
instructing Gummy to deploy them to the appropriate ren-
derer. Initial designs for new target platforms can be au-
tomatically generated using the transformation engine (see
Sect. 4.3). These initial designs can again be easily modified
(e.g. widgets can be moved, resized, deleted or remapped
to another concrete widget) after which the changes can be
evaluated. If necessary, designers can easily intervene and
correct the tool.

The manual approach offers roughly the same benefits but
only within the visual design tool for one specific platform.
Designs for other platforms can neither be quickly created
nor changed since they have to be recreated from scratch.
While most model-based design tools support flexibility by
allowing changes to the models and evaluation of the result,
these changes take more effort than with Gummy. For in-
stance, while designers could remap widgets in these tools
by altering the transformation model, selecting an alterna-
tive widget through direct manipulation is much easier. Due
to its better expressive match, Gummy requires less effort
from the designer to intervene.

Expressive match is an estimate of how close the means of
expressing design choices are to the problem being solved [6].
Gummy allows designers to create a user interface for differ-
ent platforms in much the same way as they do with single-
platform visual design tools. A visual design tool is a better
expressive match for the task of designing a (multi-platform)
user interface than a tool to manipulate abstract user inter-
face models. With model-based techniques, the connection
between the abstract models and the resulting user interface

is often not clear to the designer [18]. Thus, being able to vi-
sually design multi-platform user interfaces lowers designers’
skill barrier.

5.2.2 Power in combination
Power in combination refers to a common infrastructure that
can support new components to create new solutions [6].
This can be supported mainly by simplifying interconnec-
tions and by ease of combination. Gummy accomplishes
both.

Simplifying interconnections deals with reducing the cost
of introducing a new component from N (connect to every
other component) to 1 (just implement a standard inter-
face) [6]. As we explained in Sect. 4, Gummy can use any
combination of vocabulary and UIML renderer. Every ren-
derer just needs to supply a proxy object that implements
a common programming interface in order to communicate
with Gummy. Traditional GUI builders and existing multi-
platform design tools usually support only a fixed set of plat-
forms. Adding a new platform to one of these tools often
requires specific changes to its internals.

Ease of combination refers to the fact that it is usually not
sufficient to be able to connect different components [6]. The
connection should also be simple and straightforward. This
is clearly the case here. Gummy only requires renderers
to provide a proxy object that conforms to a simple pro-
gramming interface. We were able to integrate the Uiml.net
renderer as well as renderers for Java ME and DVB-MHP
without much effort.

6. RELATED WORK
Model-based and automatic techniques have been frequently
used for multi-platform user interface design [9]. This ap-
proach requires designers to define a high-level specification
of the user interface which is then used to automatically
produce an appropriate user interface for each target plat-
form. Two examples of tools that rely on this technique are
MOBI-D [19] and Dygimes [4]. One of the major drawbacks
of this type of tools is that the design process is not intuitive
for designers. As discussed in the previous section, Gummy
does not exhibit this problem.

Other tools that try to facilitate the design of multi-platform
user interfaces have traditionally focused on low-fidelity or
medium-fidelity prototypes. Notable examples include Da-
mask [15] and SketchiXML [5]. Damask lets designers sketch
a user interface for one device and indicate the design pat-
terns the interface uses. From this initial design Damask will
then automatically generate the other device-specific user
interfaces. Although Gummy and Damask share many con-
cepts (e.g. building an abstract model in the background,
generating initial designs which can be refined later, etc.),
it is possible to conclude that they serve different purposes.
While Damask is mainly targeted towards prototyping, the
designs that are created with Gummy can be directly used
as the final user interface and coupled to existing application
logic [17]. Recently, Damask was extended with the concept
of layers for managing consistency between designs for dif-
ferent computing platforms [16]. The motivation for this
was a survey among designers that identified consistency as
one of the major burdens for cross-device user interface de-



sign. It would be interesting to examine if layers could be
used within Gummy to propagate changes between designs
for different platforms.

SketchiXML [5] creates an abstract user interface specifica-
tion from a user interface sketch that can then be deployed
on multiple devices. However, the tool has a limited set of
abstractions that designers can employ to design a user in-
terface. It builds upon the UsiXML language to describe the
abstract user interface which has a predefined set of abstract
widgets. With Gummy, the set of abstractions is defined ex-
ternally in a UIML vocabulary and thus can be changed at
any time. SketchiXML has recently been extended to sup-
port the entire range of prototype fidelities [5]. After the
user evaluation, most participants indicated a preference for
medium- or high-fidelity prototyping. This reflects our be-
lief: We feel that most designers prefer to have a concrete
representation available during their design activities.

Collignon, Vanderdonckt and Calvary [3] describe an inter-
esting visual tool to specify plasticity domains for user in-
terfaces. A plasticity domain defines a range of contexts of
use for which a user interface is valid (e.g. a mobile phone
and a PDA). Their tool can embed several UIs correspond-
ing to different platforms into one running application. If
the context of use changes, the most appropriate of these
UIs is automatically selected and used. Contrary to the
present approach, this work does not facilitate the design of
multi-platform user interfaces. Instead, they focus on defin-
ing possible transitions between user interfaces for different
platforms and on exploiting these transitions at runtime.
The different designs still have to be created by hand.

In the Gummy tool, a basic transformation engine is used
that is able to generate an initial design for a new computing
platform depending on the available screen size. It was not
an aim of the present work to contribute to developments in
this area but the transformation engine was implemented to
prove the utility of the design approach presented in this pa-
per. Similar but more sophisticated techniques for adapting
user interfaces include Supple [11], splitting rules for grace-
ful degradation [10] and Artistic Resizing [7]. Each of these
techniques require other types of input to steer the adapta-
tion and are solely used at runtime. It will be interesting to
explore these and other transformation algorithms that take
into account a more general notion of context than just the
available screen size (e.g. different interaction techniques
and input devices such as pinch zooming on a multi-touch
display). Supple [11] looks promising as it already has basic
support for adapting to interaction techniques (e.g. making
user interface elements larger to ease interaction on a touch
screen), and to the user’s preferences and abilities [12]. Mod-
elling input devices and interaction techniques [1, 8] might
be useful to cope with the differences between computing
platforms and to manage overall consistency.

7. DISCUSSION
This paper presented Gummy, a multi-platform GUI builder
that allows designers to easily target new computing plat-
forms without having to give up their current work practices.
As designers work on the final user interface, Gummy builds
up a corresponding UIML description. The additional ab-
straction provided by this UIML description allows Gummy

to generate initial designs for new platforms based on exist-
ing user interfaces created for the same application. Gummy
combines many of the advantages of existing multi-platform
design tools with those of traditional GUI builders. This
design approach lowers the skill barrier to multi-platform
user interface design by allowing designers to easily inter-
vene in the process and reuse their existing knowledge of
single-platform design tools. Gummy’s architecture is flex-
ible enough to easily integrate a wide range of computing
platforms and UIML renderers.

We feel that our work opens up interesting possibilities for
further research. In particular, the process of empowering
domain experts to design user interfaces with Gummy will
be examined. Existing tools are not tailored toward non-
technical domain experts, even though their input is very
important during the design process and helps to shape the
final user interface. To provide support for domain experts,
the Gummy workspace should not only take into account the
target computing platform but also the domain for which the
user interface will be designed. UIML vocabularies allow us
to do this [14].

At the moment, Gummy does not explicitly enforce consis-
tency. Consistency is only ensured between an initial de-
sign and the existing designs it was generated from. Al-
though this is sufficient in most cases, it does not scale well
to widely varying computing platforms. Sometimes break-
ing consistency is desirable because of the specific nature of
the target platform (e.g. excluding labels due to space con-
straints). In the future, Gummy should allow designers to
control consistency between computing platforms at a high
level of granularity (e.g. exclude labels for both PDAs and
mobile phones, but include them for other platforms). As
mentioned in the discussion on related work (Sect. 6), Da-
mask’s concept of layers [16] in a modified form might be a
good way to realise this.

Gummy lacks a number of features that are crucial for its
applicability to real-world problems. For one, only user in-
terfaces with a single screen can be designed. Support for
multiple dialogues would allow designers to create complex
multi-platform user interfaces with the tool. The dialogue
flow should be kept consistent when dialogues are split for
certain platforms and merged for others. Furthermore, de-
signers currently have no way of specifying how a user inter-
face should behave when it is resized at runtime. The main
challenge here is to integrate different platform-specific lay-
out managers in a generic way.

We are aware of the limitations of our current rule-based
transformation engine (Sect. 5). Since the focus is mainly on
an intuitive multi-platform user interface design approach,
our efforts will not concentrate on developing a more ad-
vanced transformation engine. Instead, an attempt will be
made to extend the Gummy tool to enable the integration
of multiple transformation engines. This would allow the
use of existing, more sophisticated techniques such as Sup-
ple [11], Artistic Resizing [7] or graceful degradation [10].
Designers would then be able to try out several transforma-
tion engines to generate an initial design and pick the one
they like best. As mentioned in Sect. 6, it is necessary to
investigate transformation algorithms that take into account



more than just the available screen size. Interaction mod-
elling approaches [1, 8] might be used to tackle this problem
while still preserving the generality of our approach.

More information on Gummy and an executable of the tool
can be found at http://research.edm.uhasselt.be/~gummy/.

Acknowledgments
This paper would not have been what it is today without
the help of the other researchers at EDM. We warmly thank
everyone who helped us test the tool and provided useful in-
sights during the writing of this paper. Part of the research
at EDM is funded by ERDF (European Regional Develop-
ment Fund) and the Flemish Government. The AMASS++
(Advanced Multimedia Alignment and Structured Summa-
rization) project IWT 060051 is directly funded by the IWT
(Flemish subsidy organization).

8. REFERENCES
[1] Renaud Blanch and Michel Beaudouin-Lafon.

Programming rich interactions using the hierarchical
state machine toolkit. In Proceedings of AVI ’06,
pages 51–58, New York, NY, USA, 2006. ACM.

[2] Luca Cardelli. Building user interfaces by direct
manipulation. In Proceedings of UIST ’88, pages
152–166, New York, NY, USA, 1988. ACM.

[3] Bernôıt Collignon, Jean Vanderdonckt, and Gaëlle
Calvary. An intelligent editor for multi-presentation
user interfaces. In Proceedings of SAC ’08, New York,
NY, USA, 2008. ACM.

[4] Karin Coninx, Kris Luyten, Chris Vandervelpen,
Jan Van den Bergh, and Bert Creemers. Dygimes:
Dynamically generating interfaces for mobile
computing devices and embedded systems. In Mobile
HCI, volume 2795 of Lecture Notes in Computer
Science, pages 256–270. Springer, 2003.

[5] Adrien Coyette, Suzanne Kieffer, and Jean
Vanderdonckt. Multi-fidelity prototyping of user
interfaces. In Proceedings of INTERACT ’07, volume
4662 of Lecture Notes in Computer Science, pages
150–164. Springer, 2007.

[6] Jr. Dan R. Olsen. Evaluating user interface systems
research. In Proceedings of UIST ’07, pages 251–258,
New York, NY, USA, 2007. ACM.

[7] Pierre Dragicevic, Stéphane Chatty, David Thevenin,
and Jean-Luc Vinot. Artistic resizing: a technique for
rich scale-sensitive vector graphics. In Proceedings of
UIST ’05, pages 201–210, New York, NY, USA, 2005.
ACM.

[8] Pierre Dragicevic and Jean-Daniel Fekete. Support for
input adaptability in the icon toolkit. In Proceedings
of ICMI ’04, pages 212–219, New York, NY, USA,
2004. ACM.

[9] Jacob Eisenstein, Jean Vanderdonckt, and Angel
Puerta. Applying model-based techniques to the
development of uis for mobile computers. In
Proceedings of IUI ’01, pages 69–76, New York, NY,
USA, 2001. ACM.

[10] Murielle Florins, Francisco Montero Simarro, Jean
Vanderdonckt, and Benjamin Michotte. Splitting rules
for graceful degradation of user interfaces. In
Proceedings of AVI ’06, pages 59–66, New York, NY,

USA, 2006. ACM.

[11] Krzysztof Gajos and Daniel S. Weld. Supple:
automatically generating user interfaces. In
Proceedings of IUI ’04, pages 93–100, New York, NY,
USA, 2004. ACM.

[12] Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S.
Weld. Automatically generating user interfaces
adapted to users’ motor and vision capabilities. In
Proceedings of UIST ’07, pages 231–240, New York,
NY, USA, 2007. ACM.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[14] James Helms and Marc Abrams. Retrospective on ui
description languages, based on eight years´
experience with the user interface markup language
(uiml). International Journal of Web Engineering and
Technology (IJWET), 4(2), 2008. To appear.

[15] James Lin and James A. Landay. Damask: A Tool for
Early-Stage Design and Prototyping of Multi-Device
User Interfaces. In Proceedings of DMS ’02, pages
573–580, 2002.

[16] James Lin and James Landay. Employing patterns
and layers for early-stage design and prototyping of
cross-device user interfaces. In Proceedings of CHI ’08,
New York, NY, USA, 2008. ACM. To appear.

[17] Kris Luyten, Kristof Thys, Jo Vermeulen, and Karin
Coninx. A generic approach for multi-device user
interface rendering with uiml. In Computer-Aided
Design Of User Interfaces V, pages 175–182. Springer
Netherlands, 2007.

[18] Brad Myers, Scott E. Hudson, and Randy Pausch.
Past, present, and future of user interface software
tools. ACM Trans. Comput.-Hum. Interact.,
7(1):3–28, 2000.

[19] Angel Puerta and Jacob Eisenstein. Towards a general
computational framework for model-based interface
development systems. In Proceedings of IUI ’99, pages
171–178, New York, NY, USA, 1999. ACM.

[20] Mark Weiser. The computer for the 21st century.
Scientific American, 265(3):66–75, September 1991.




