

Intelligibility Required: How to Make Us Look Smart Again

Jo Vermeulen, Kris Luyten and Karin Coninx
Hasselt University – tUL – iMinds

Wetenschapspark 2,
B-3590 Diepenbeek, Belgium

[jo.vermeulen, kris.luyten, karin.coninx]@uhasselt.be

ABSTRACT
Users often become frustrated when they are unable to
understand and control a ubicomp environment. Previous
work has suggested that ubicomp systems should be
intelligible to allow users to understand how the system
works and controllable to let users intervene when the
system makes a mistake. In this paper, we identify several
design considerations for supporting intelligibility and
control in ubicomp environments. We show these
considerations are also applicable and necessary beyond
ubicomp. We position examples of existing solutions in the
design space that is obtained from combining these
dimensions and show how it can be used to explore design
alternatives for supporting intelligibility and control.

Author Keywords
intelligibility; control; end-user configuration; ubicomp;
context; feedforward.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Human Factors; Design.

INTRODUCTION
Ubiquitous computing (ubicomp) systems are generally
context-aware, which means they act based on context [9]:
implicit input collected from the environment [21]. These
systems thus often act without explicitly involving the user,
which may leave users surprised as to why the system
behaves in a certain way. Moreover, system actions are
usually a result of complex reasoning about context data,
which might be hard for users to grasp [12].

However, being difficult to understand is only part of the
problem. Context-aware systems have been shown not be
infallible. They are bound to sometimes make mistakes
because of the inevitable incompleteness of context

information [4,6]. It is therefore important that users are
able to correct the system if it makes a mistake. Failing to
do so will eventually result in users who feel out of control,
and might cause them to lose trust in the system [2].

Bellotti and Edwards argue that the more we try to get
systems to act on our behalf, especially in relation to other
people, the more we have to watch every move they make
[4]. They have proposed a number of design principles to
tackle these problems, including intelligibility (what others
have called scrutability [5]) and control. They argue that
context-aware systems should be intelligible by informing
users about the system's understanding of the world and
should offer users control in order to recover from possible
mistakes.

In his book The Psychology of Everyday Things [18],
Donald Norman introduced the Stages of Action model.
The design principles that come into play to effectively
bridge the Gulfs of Execution and Evaluation are widely
recognized and adopted for traditional software, but are not
always sufficient for ubicomp systems. First, visibility falls
short since a lot of computing is hidden in the environment
of the user and sensors that are hardly noticeable are used to
perform part of the interaction. Moreover, ensuring the user
can form a good conceptual model of the system is
cumbersome for ubicomp systems given the complexity
these systems tend to exhibit. These complexities are often
hidden for the users, but unmistakeably present in the
software architecture, which is often distributed, embedded
in the environment and designed for simultaneous usage.
Finally, besides informative feedback that tells users what
has happened, ubicomp systems might also need to convey
to users what is going to happen in the future. Intelligibility
helps to overcome the difficulties of interacting with these
systems, by revealing how the software acts and reacts.

In this paper, we explore how we can help users to
understand how ubicomp systems work, and how we can
support them in configuring and correcting the system’s
behaviour.

BACKGROUND
Bellotti and Edwards [4] state that intelligible context-
aware systems are able to represent to their users what they
know, how they know it, and what they are doing about it.
Dourish proposed the idea of reflective self-representations
that are generated by a system and reliably describe its

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ROCHI’13, September 2–4, 2013, Cluj-Napoca, Romania.
Copyright 2013 ACM 1-58113-000-0/00/0010 …$15.00.

state, while also allowing users to affect that state and
control the system’s behavior [11].

There are many approaches to providing intelligibility and
control, some quite subtle. For example, Google Maps uses
a growing or shrinking “blue circle” to convey how
confident it is of the user’s current location. Other basic
examples of intelligibility can be found in recommender
systems. Services like Amazon, the App Store, or Youtube
provide recommendations of related content to their users.
Users can also ask the system why a certain item (e.g., a
book, app or video) was recommended to them.
Additionally, the system offers control to users: they can
affect the recommender engine’s behaviour by indicating
that they are not interested in those recommendations.

Several systems have been developed to support end-users
in controlling, configuring or programming their ubicomp
environments (e.g., [8,20]). Further investigation is
necessary, however, to explore which interaction techniques
and user interfaces are best suited for this purpose. There
are a number of ubicomp systems and architectures that
extend intelligibility and control to end-users. Cheverst's
IOS system [5] shows confidence levels and visualizations
of decision tree rules and allows end-users to manipulate
system parameters. Situations [10] automatically supports
simple intelligibility and control user interfaces and also
allows designers to create application-specific user
interfaces.

Lim, Dey and Avrahami [15] investigated if why (not)
questions could be used to improve the intelligibility of
context-aware systems. Their results suggest that allowing
users to pose why (not) questions about the behaviour of a
context-aware system would result in better understanding
and stronger feelings of trust. In a later study, Lim and Dey
[14] investigated the different information needs users have
for context-aware applications under various situations,
recommending amongst others that why questions should
be made available for all context-aware applications.

Ju et al. [13] describe a design framework for reasoning
about transitions between implicit and explicit interaction.
They discuss three interaction techniques that allow users to
overcome errors in system's proactive behaviour: user
reflection, system demonstration, and override. The first
two can be seen as interaction techniques for improving
intelligibility, while the latter is a technique for providing
control.

Coutaz [7] proposed the meta-User Interface (meta-UI)
concept, which is essentially a user interface to support
intelligibility and control in smart spaces. Coutaz analysed
several existing systems and argues that there should be
more attention towards control by end-users and to
embedding meta-UIs within domain-specific applications.

DESIGN SPACE
The systems that were discussed in the previous section
only represent a single point in the larger design space of
possible techniques to provide intelligibility and control. In
order to get a better idea of the different possibilities and
the design choices that play a role when developing
interfaces for intelligibility and control, we introduce a
design space consisting of six dimensions, as shown in
Figure 1:

Figure 1: Design space for intelligibility and control.

We begin with a brief overview of each of these six
dimensions, after which we discuss them in more detail and
provide examples.

Timing: Intelligibility and control can be supported at
different times during the interaction: before, during and
after events take place.

Generality: User interfaces and interaction techniques for
intelligibility and control can be general or domain-specific
(e.g., techniques for visualising location errors in navigation
systems).

Degree of co-location: Support for intelligibility or control
might be embedded or integrated with the rest of the user
interface versus external, when users are required to switch
to a separate interface.

Initiative: Users may need to explicitly request
intelligibility information or invoke control techniques
manually (user), or might automatically be presented with
these features when necessary (system).

Modality: Several modalities can be used to help users to
understand or control the system (e.g. visual, auditory,
haptic).

Level of control: The level of control end-users can exert
over the system varies from intelligibility, where no
additional control is added beyond intelligibility, over
counteract, where users can perform the opposite action
(e.g., undo), to configuration, where users can tweak

predefined system parameters, and programmability where
users can themselves (re-)define how the system works.

Timing
Intelligibility information can be provided at different
phases during the interaction with a ubicomp system. For
example, consider the case where the system would
perform a certain action automatically given a certain
trigger (e.g., showing a personalized calendar on a
proximity-aware display when a user approaches it). There
are different points in time at which intelligibility
information can be provided:

• Before the action: Users could be offered
information before the action would take place,
allowing them to anticipate the system’s
behaviour.

• During the action: The system could visualize
events and actions when they happen, to allow
users to better understand the flow between
different components in the system (e.g., how
different sensors work together).

• After the action: The user could be offered
intelligibility information after the action has been
performed, for example to explain why the system
took that action.

For example, Ju et al.’s proximity-aware Range whiteboard
[13] provides intelligibility and control before and during
system actions. Range uses a system demonstration
technique where the system shows the user what it is doing,
or what it is going to do. When switching between ambient
mode and the drawing mode, Range uses a transition of the
whiteboard’s contents to call the user’s attention to the
mode change, instead of suddenly switching. Moreover,
while the whiteboard is transitioning between modes, users
can grab the moving contents to cancel the mode switch
(override). Additionally, Lim and Dey’s concept of what-if
questions [16] is intelligibility information that is provided
before the action.

An example of intelligibility information that is provided
after the action, are why questions. Ko and Myers
developed the Crystal application framework [17] that
allows programmers to support why questions in their
applications. A word processor could, for example, allow
users to pose questions about its more complex formatting
behaviour (e.g., “Why is this text bold?”). Why questions
have also been used for context-aware systems [16] and
ubicomp environments [26].

Generality
Intelligibility or control techniques can be general or
domain-specific. A simple example of a domain-specific
intelligibility interface is the way location-based services
present the user’s current location together with the level of
uncertainty [1]. For example, the blue circle in Google

Maps gives users an indication of how certain the system is
of the user’s current location, depending on the size of the
circle. This interface tells users that it knows they are
located somewhere in the circle, but it does not know
precisely where they are located.

While domain-specific interfaces might limit flexibility and
reuse, they might be easier for users to understand as they
provide a better expressive match. It is, for example, easier
to estimate the location error using a circle on a map than to
try to interpret an error percentage. Domain-specific
interfaces can be more easily integrated into a specific
application (see also: co-location), which might help users
remain in the flow of their current task.

Other examples of domain-specific intelligibility interfaces
are gesture guides, such as OctoPocus [3]. OctoPocus helps
users perform gestures by continuously showing the
possible remaining gesture paths. Similarly, Ju Lee and
Klemmer’s implementation of user reflection, system
demonstration and override for the Range whiteboard is
specifically designed for proximity-aware whiteboards.

An example of a generic interface for intelligibility and
control is PervasiveCrystal [26] (see: next section), which
provides users with the possibility to pose why and why not
questions about any event occurring in a ubicomp
environment and offers simple control primitives.

Co-location
The co-location dimension refers to the level of integration
between an interface for intelligibility and control, and the
application in which it is used. Intelligibility or control
could be offered in a separate interface (external), or could
be an integrated part of the application (embedded). In her
discusson about meta-user interfaces, Coutaz [7] calls this
dimension the “level of integration”.

OctoPocus [3], Ju et al.’s techniques [13], and the Google
Maps location error visualisation are all examples of
embedded intelligibility interfaces. External interfaces tend
to offer more possibilities and flexibility, but, unlike
embedded interfaces, require the user to interrupt their task
and switch to a separate interface. External interfaces tend
to be useful for controlling or understanding high-level,
generic components of a system. An example of an external
interface is Dey et al.’s a CAPpella tool [8] that allows
users to program a context-aware system by demonstrating
its desired behaviour.

Initiative
The initiative for showing information to improve the users’
understanding can be taken by the system itself or this
information can be available upon request by the user.
When the system takes the initiative, it could reveal
information to draw the user’s attention to a certain event,
as with Ju et al.’s system demonstration technique [13].
Alternatively, the system could provide users with an
option to receive detailed information if they need it,

similar to the way services like Amazon can explain why a
certain products were recommended to the user.

There might be several arguments for choosing between
these two strategies. Automatically providing information
all the time might be distracting or even annoying for the
user, depending on the amount of detail that is provided.
Still, it can be useful in select cases to have access to very
detailed information to debug the system’s behaviour and
understand deeper details of how the system works. In this
case, we would probably like to leave the initiative of
showing this information to the user, so that the information
is only there when necessary. On the other hand, simple and
informative feedback that explains to users what the system
is doing might be useful to show at all times, even for
expert users.

An elegant way of supporting both novices and experts, and
thereby combining system and user initiative, can be found
in systems like OctoPocus [3]. This kind of system waits
for a certain time before it presents the intelligibility
interface, so that experts who already understand how the
system works can perform actions very efficiently, but can
always slow down when they are unsure.

Modality
Depending on the domain and the context of use, different
modalities might be preferred (visual, haptic, auditory). For
example, when the users need their visual attention
elsewhere (e.g., while driving), intelligibility or control
might be better provided using another modality. Most
systems typically only support intelligibility or control
using the visual modality.

Level of control
There are increasing levels of control that end-users can
exert over the system. The most basic level of control is
only intelligibility, where no additional control functionality
is provided beyond intelligibility. Note that this still allows
users to intervene by changing their own behaviour based
on their understanding of how the system works. For
example, because we understand how a motion-controlled
light works, we know that we can wave our hands to turn
the light on again when it goes out. An example of this
level of control would be the availability of only a why
questions interface. Based on the understanding gained by
posing why questions, users could then alter their behaviour
to exert control.

The next level of control is counteracting. Systems that
provide this level of control only allow users to revert the
system’s actions (e.g., undo). An example of such as system
is PervasiveCrystal [26] (see: next section). Next, systems
that allow users to tweak predefined system parameters
feature the configuration level of control. An example of
this kind of system is Dey and Newberger’s Situations
framework [10].

The most advanced level of control, programmability, is
available when users can themselves (re-)define how the
system works, such as in Dey et al.’s a CAPpella [8].

INTELLIGIBILITY APPS: SOME SAMPLES FROM THE
DESIGN SPACE

PervasiveCrystal
PervasiveCrystal [26] is a system that allows users to
understand the behaviour of a ubicomp environment by
posing why and why not questions. PervasiveCrystal can
reason about the causes and consequences of system and
user actions, based on a rule-based behaviour model, and
uses this information to automatically generate a list of why
and why not questions. PervasiveCrystal is built on top of
ReWiRe [22], an existing framework to dynamically
compose, deploy and query software components in
ubicomp environments. It uses an annotated version of
ReWiRe’s behaviour model that links different rules
together. The annotations are then processed at runtime to
build up a model of the system’s behaviour that can be
easily queried and is used to generate the list of why and
why not questions. It features displays that are equipped
with a motion sensor to detect the presence of the user.

We illustrate how our approach works by means of an
example scenario, shown in Figure 2. We will follow Bob,
one of the visitors of the smart museum equipped with
PervasiveCrystal. When he enters the museum, Bob
receives a mobile museum guide that can be used to
interrogate and control the environment. Bob is told that the
museum features displays that can detect his presence and
react to motion.

Figure 2: PervasiveCrystal shows a list of available questions,
based on recent events (A). Answers are generated by linking
events to what caused them to happen (B.1). Additionally
users have access to two control mechanisms: they can undo
operations (B.2) or invoke fine-grained control user interfaces,
in this case: a light control UI (B.4).

When Bob approaches one of these displays during his
museum visit, he waves in front of the screen to play a
movie, as shown in Figure 2 (scene 1). However, at that

time, the lights also go out. Bob does not understand why
this happens, and is confused (scene 2). Behind the scenes,
there are several rules that react to context changes (scene
3). One of the rules plays a movie when the camera detects
motion. There is also another rule that turns off the lights
whenever a movie is playing to provide users with a better
viewing experience. When the first rule executes, its effect
(playing a movie) causes the second rule to execute and
turn off the lights. Bob remembers he can use the why
menu to ask questions about the smart museum’s behaviour
(scene 4). As seen in Figure 2 (4.A), the why menu shows a
list of available questions about events together with a
representative icon. PervasiveCrystal automatically
generates the list of questions by tracking events that
occurred (e.g., lights that are switched off).

The Visible Computer
Because of the heterogeneous nature of ubicomp
environments — which often employ several displays,
speakers, sensors, embedded devices — users might require
co-located information that tells them what the system is
doing, when and where it is doing this, and allows them to
intervene without leaving their current task.

To explore this idea, we developed a prototype [24] that
uses steerable projectors to overlay the environment with
real-time visualizations of actions occurring in the
environment (e.g. turning off the lights). Figure 3 shows
how we used a simple graphical language to visualize the
relationships between sensors or devices and system
actions. When an action is executed, an animation is shown
to visualize the cause(s) and consequence(s) of this action.
In addition, users can issue a voice command to cancel (or
undo) the most recent action.

Figure 3: A user looks at an animation that links sensors and
devices with system actions to explain the system's behavior.

Each sensor or input/output device (e.g., a camera, speaker,
display) is visualised at its physical location in the
environment with an icon and a label. These icons allow
users to get an overview of the devices that are present in
their environment. Below the icon of each input device or

sensor, a separate label is drawn that displays the
possibilities of the device and its current state using smaller
icons. Output devices feature only an icon and no separate
label. The icon of an output device embeds its current state
(e.g., a light’s intensity displayed as a horizontal bar. Figure
4 shows how a chain of events is visualised using this
graphical language.

Figure 4: Visualising a chain of events: touching the screen
results in a movie being played. This, in turn, results in the
lights being dimmed.

The Feedforward Torch
We have built the Feedforward Torch [25], a prototype to
explore feedforward. Feedforward is a specific type of
intelligibility information that informs the user about what
the result of an action will be [23]. If we consider the
timing dimension, feedforward is thus intelligibility
information that is provided before an event takes place.
While feedback tells the user what happened, feedforward
tells the user what will happen. Well-designed feedforward
is an effective tool for bridging Norman’s Gulf of
Execution [18] – the gap between a user’s goals for action
and the means for executing those goals [23]. Ju et al. [13]
also talk about feedforward as a specific variation of their
user reflection technique.

The Feedforward Torch is a combination of a smartphone
and mobile projector that provides feedforward about the
objects and interactions in the user’s environment. With the
Feedforward Torch, we do not focus exclusively on
ubicomp environments, but also target existing legacy
systems in our daily environments. We argue that these
environments require intelligibility as well. If users have
difficulties interacting with the system, having to fix this
after deployment is very cumbersome and expensive.
Physically changing the interface design to include better
feedforward would imply fixing every instance of the
system separately. The Feedforward Torch augments the
systems during usage and does not require physical changes
in order to overcome design flaws of legacy systems.

Users can point the Feedforward Torch at objects in their
environment and reveal feedforward information about
them, as if they were located under a spotlight. Users are
shown under which conditions actions associated with the
object will be executed by the system (e.g., a displacement
in time or space), so that they can anticipate and adapt their
behaviour, if necessary. Animations are used to better
convey the effect an action will have. The Feedforward

Torch does not extend the features of a legacy system; its
sole focus is on guiding the user to use the actual system.

The main difference between the Feedforward Torch and
the Visible Computer, which used steerable projectors, is
the fact that the Feedforward Torch places the initiative for
showing information with the user. Figure 5 shows how the
Feedforward Torch can be used to understand an array of
light switches. Like in the Visible Computer prototype,
information is projected on and around the system, so that
users do not need to switch their attention to another
interface and can continue to focus on the task they are
performing (co-location: embedded).

Figure 5: A user points at a light switch using the Feedforward
Torch to understand what will happen if he presses the switch.

Figure 6 shows the Feedforward Torch prototype,
consisting of a Samsung Galaxy S smart phone, a
MicroVision SHOWWX+ laser pico projector and a laser
pointer to be able to point the device at physical objects. A
custom casing was made in order to support one-handed
interaction. We used a Wizard-of-Oz control interface to
show the right content to the user at the right time in order
to simulate a fully working object recognition mechanism.

Figure 6: The Feedforward Torch prototype (right) and
Wizard-of-Oz control interface (left).

MAPPING THE DESIGN SPACE
In Figure 7, we show how the different systems that were
discussed in this paper fit into the proposed design space.
We will discuss each of the six dimensions.

Figure 7: Mapping the different system or techniques in the
design space for intelligibility and control

Timing: With respect to timing, there is quite some
diversity. There are a few techniques such as those of Ju et
al. [13], OctoPocus [3] or Cheverst’s IOS system [5] that

span multiple alternatives of the timing dimension, but most
techniques only offer a specific moment in time at which
intelligibility is provided. Of course, ideally, systems
should be intelligible about past, present and future events.

Generality: We covered a variety of domain-specific and
general interfaces in our design space. Some systems or
techniques can provide both domain-specific and general
intelligibility, e.g., recommender systems, what if questions
and Situations [10].

Degree of co-location: We notice that most domain-specific
interfaces are also embedded (e.g., the location error
visualisation in Google Maps). However, this is not always
the case. For example, Rodden’s jigsaw editor [20] is a
domain-specific interface for controlling a smart home, but
is nevertheless external.

Initiative: Most systems either provide intelligibility
automatically, or allow the user to request detailed
information when necessary. As discussed earlier, some
systems combine both approaches to support a flexible
transition from novice users to experts, such as OctoPocus
[3].

Modality: It is apparent that most techniques rely on the
visual modality. There are only a few systems that provide
intelligibility through other means, and even then, these are
providing visual information as well (e.g., the Visible
Computer and the Feedforward Torch).

Level of control: There are a number of systems that only
provide intelligibility (e.g., Google Maps, the Feedforward
Torch, OctoPocus) without any control mechanism. On the
other end of the spectrum, there are very powerful systems
such as Rodden’s jigsaw editor [20], IOS [5] and a
CAPpella [8]. However, these techniques usually employ
an external interface and are very general. One could argue
whether these techniques are really usable by non-technical
users.

LESSONS LEARNED
In what follows, we reflect on our experiences from
conducting first use studies with the different systems
discussed earlier (PervasiveCrystal, the Visible Computer,
and the Feedforward Torch). We discuss the lessons learned
with respect to the previously introduced design space.

PervasiveCrystal
We learned that textual explanations are not always ideal.
Automatically generated explanations can sometimes be
confusing to users, especially when they describe a long
sequence of events that caused a system action, or when
double negations are involved (e.g., “The lights didn’t go
out because the movie didn’t start playing”). While there
are a number of strategies to overcome this problem
(simplifying or combining several explanations), we believe
some situations might be too complex to explain solely
using text.

Another problem users faced is that the why questions
menu quickly became cluttered due to many events firing in
a short time span. This made it hard for users to find the
question they wanted to ask. Unlike desktop applications
that typically use explicit interaction, ubicomp
environments use implicit interaction and sensors that
trigger many events (e.g., a motion sensor). While these
questions could be clustered, it might still be hard for users
to find the question about the event that they are interested
in. With respect to the control primitives, participants also
found it hard to predict the effect of invoking undo and do,
after which we used more concrete labels (e.g., “Turn on
lights” instead of “Undo”). The fact that the effect of the
undo and do actions was hard to predict might also be due
to the external nature of the interface. Why questions that
are embedded into specific applications (e.g., the word
processor built with Crystal [17]) might be less
disconnected from the user’s task.

The Visible Computer
We ran an informal study with five participants to gather
feedback about the suitability of our approach of visualizing
the system’s behaviour using steerable projectors. Subjects
were asked to explain how the system worked in three
different situations, after having seen the visualization. Four
out of five subjects could describe the system's behaviour
correctly for each of the three situations. This promising
result could indicate that a visual, embedded way of
presenting how the system works might help users to form a
better mental model, which is consistent with findings by
Rehman et al. [19]. Participants were generally happy with
the visual representation, but sometimes had difficulties
with keeping track of visualizations across multiple
surfaces. One participant mentioned she received too much
information, leaving her overwhelmed. This might indicate
that we should be careful when automatically providing
detailed explanations (system initiative). Finally, several
subjects experienced difficulties with invoking the cancel
feature, possibly because they were not familiar with
speech interaction (modality: auditory).

The Feedforward Torch
We also conducted a small study with the Feedforward
Torch. We used a Wizard-of-Oz control interface to change
the contents of the feedforward display.

All participants were able to complete the tasks and several
participants mentioned they would have been unable to do
so without the Feedforward Torch or additional help. Two
participants stated that the system would have come in
handy in a large city: “When I had to use the London
Underground for the first time, the Feedforward Torch
would have been useful to help me figure out how to use the
ticketing machine. Now, I had to observe other passengers
first before I knew how the system worked and what I had to
do.”

Participants liked the fact that information was overlaid on
the physical environment (embedded), so they did not have
to switch between the smartphone display and the system or
device they had to operate. One of the advantages of mobile
projection that was mentioned during the semi-structured
interviews was the fact that groups of people could explore
the projection together. Nevertheless, projection only
worked well in low-lighting conditions. The use of
animations was appreciated, especially when the result of a
certain action would happen over time or outside the user’s
periphery. Finally, participants strongly preferred
visualisations to textual explanations in the encountered
scenarios, as they considered reading textual information to
be more time-consuming.

We can conclude that the choice between different
combinations of each of these dimensions for intelligibility
and control interfaces can have a large impact on the user
experience. Designers can use our design space to consider
these different alternatives and choose the one that fits their
application best.

REFERENCES
1. Aksenov, P., Luyten, K., and Coninx, K. O Brother, Where

Art Thou Located? Raising Awareness of Variability in
Location Tracking for Users of Location-based Pervasive
Applications. J. Location Based Services, 6 (4), (2012), 211-
233.

2. Barkhuus, L. and Dey, A.K. Is Context-Aware Computing
Taking Control away from the User? Three Levels of
Interactivity Examined. Proc. Ubicomp '03, Springer (2003),
149–156.

3. Bau, O., and Mackay, W. E. OctoPocus: a dynamic guide for
learning gesture-based command sets. Proc. UIST ’08, ACM
(2008), 37–46.

4. Bellotti, V. and Edwards, W.K. Intelligibility and
accountability: human considerations in context-aware
systems. Hum.-Comput. Interact. 16, 2 (2001), 193–212.

5. Cheverst, K., Byun, H.E., Fitton, D., Sas, C., Kray, C., and
Villar, N. Exploring Issues of User Model Transparency and
Proactive Behaviour in an Office Environment Control
System. User Modeling and User-Adapted Interaction 15, 3–
4 (2005), 235–273.

6. Cheverst, K., Davies, N., Mitchell, K., and Efstratiou, C.
Using Context as a Crystal Ball: Rewards and Pitfalls.
Personal Ubiquitous Comput. 5, 1 (2001), 8–11.

7. Coutaz, J. Meta-User Interfaces for Ambient Spaces. Proc.
TAMODIA '06, (2006), 1-15.

8. Dey, A.K., Hamid, R., Beckmann, C., Li, I., and Hsu, D. a
CAPpella: programming by demonstration of context-aware
applications. Proc. CHI '04, ACM (2004), 33–40.

9. Dey, A.K. Understanding and Using Context. Personal
Ubiquitous Comput. 5, 1 (2001), 4–7.

10. Dey, A.K. and Newberger, A. Support for Context
Intelligibility and Control. Proc. CHI '09, ACM (2009).

11. Dourish, P. Accounting for system behavior: representation,
reflection, and resourceful action. In Computers and design
in context, MIT Press (1997), 145–170.

12. Edwards, W.K. and Grinter, R.E. At Home with Ubiquitous
Computing: Seven Challenges. Proc. UbiComp '01, Springer-
Verlag (2001), 256–272.

13. Ju, Lee, and Klemmer. Range: exploring implicit interaction
through electronic whiteboard design. Proc. CSCW '08, ACM
(2008), 17–26.

14. Lim, B.Y. and Dey, A.K. Assessing Demand for
Intelligibility in Context-Aware Applications. Proc. Ubicomp
'09, ACM (2009), 195–204.

15. Lim, B.Y., Dey, A.K., and Avrahami, D. Why and Why Not
Explanations Improve the Intelligibility of Context-Aware
Intelligent Systems. Proc. CHI '09, ACM (2009), 2119–2128.

16. Lim, B.Y., Dey, A.K. Toolkit to Support Intelligibility in
Context-Aware Applications. Proc. Ubicomp ’10, ACM
(2010), 13–22.

17. Myers, B.A., Weitzman, D.A, Ko, A.J., and Chau, D.H.
Answering why and why not questions in user interfaces.
Proc. CHI '06, ACM (2006) 397–406.

18. Norman, D. A. The Psychology Of Everyday Things. Basic
Books, New York, USA, June 1988.

19. Rehman, K., Stajano, F., and Coulouris, G. Visually
Interactive Location-Aware Computing. Proc. Ubicomp '05.,
(2005), 177–194.

20. Rodden, T., Crabtree, A., Hemmings, T., et al. Configuring
the Ubiquitous Home. Proc. COOP '04, (2004), 227–242.

21. Schmidt, A. Implicit Human-Computer Interaction Through
Context. Personal Ubiquitous Comput. 4, 2/3 (2000), 191–
199.

22. Vanderhulst, G., Luyten, K., and Coninx, K. ReWiRe:
Creating interactive pervasive systems that cope with
changing environments by rewiring. Proc. IE '08, (2008), 1–
8.

23. Vermeulen, J., Luyten, K, van den Hoven, E., Coninx, K.
Crossing the Bridge over Norman’s Gulf of Execution:
Revealing Feedforward’s True Identity. Proc. CHI ’13, ACM
(2013), 1931–1940.

24. Vermeulen, J., Slenders, J., Luyten, K., and Coninx, K. I Bet
You Look Good on the Wall: Making the Invisible Computer
Visible. Proc. AmI '09, Springer-Verlag (2009), 196–205.

25. Vermeulen, J., Luyten, K., and Coninx, K. Understanding
Complex Environments with the Feedforward Torch. Proc.
AmI '12, Springer-Verlag (2012), 312–319.

26. Vermeulen, J., Vanderhulst, G., Luyten, K., and Coninx, K.
PervasiveCrystal: Asking and Answering Why and Why Not
Questions about Pervasive Computing Applications. Proc. IE
'10, (2010), 271–276.

