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ABSTRACT 
Users often become frustrated when they are unable to 
understand and control a ubicomp environment. Previous 
work has suggested that ubicomp systems should be 
intelligible to allow users to understand how the system 
works and controllable to let users intervene when the 
system makes a mistake. In this paper, we identify several 
design considerations for supporting intelligibility and 
control in ubicomp environments. We show these 
considerations are also applicable and necessary beyond 
ubicomp. We position examples of existing solutions in the 
design space that is obtained from combining these 
dimensions and show how it can be used to explore design 
alternatives for supporting intelligibility and control.  
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INTRODUCTION 
Ubiquitous computing (ubicomp) systems are generally 
context-aware, which means they act based on context [9]: 
implicit input collected from the environment [21]. These 
systems thus often act without explicitly involving the user, 
which may leave users surprised as to why the system 
behaves in a certain way. Moreover, system actions are 
usually a result of complex reasoning about context data, 
which might be hard for users to grasp [12]. 

However, being difficult to understand is only part of the 
problem. Context-aware systems have been shown not be 
infallible. They are bound to sometimes make mistakes 
because of the inevitable incompleteness of context 

information [4,6]. It is therefore important that users are 
able to correct the system if it makes a mistake. Failing to 
do so will eventually result in users who feel out of control, 
and might cause them to lose trust in the system [2].  

Bellotti and Edwards argue that the more we try to get 
systems to act on our behalf, especially in relation to other 
people, the more we have to watch every move they make 
[4]. They have proposed a number of design principles to 
tackle these problems, including intelligibility (what others 
have called scrutability [5]) and control. They argue that 
context-aware systems should be intelligible by informing 
users about the system's understanding of the world and 
should offer users control in order to recover from possible 
mistakes. 

In his book The Psychology of Everyday Things [18], 
Donald Norman introduced the Stages of Action model. 
The design principles that come into play to effectively 
bridge the Gulfs of Execution and Evaluation are widely 
recognized and adopted for traditional software, but are not 
always sufficient for ubicomp systems. First, visibility falls 
short since a lot of computing is hidden in the environment 
of the user and sensors that are hardly noticeable are used to 
perform part of the interaction. Moreover, ensuring the user 
can form a good conceptual model of the system is 
cumbersome for ubicomp systems given the complexity 
these systems tend to exhibit. These complexities are often 
hidden for the users, but unmistakeably present in the 
software architecture, which is often distributed, embedded 
in the environment and designed for simultaneous usage. 
Finally, besides informative feedback that tells users what 
has happened, ubicomp systems might also need to convey 
to users what is going to happen in the future. Intelligibility 
helps to overcome the difficulties of interacting with these 
systems, by revealing how the software acts and reacts.  

In this paper, we explore how we can help users to 
understand how ubicomp systems work, and how we can 
support them in configuring and correcting the system’s 
behaviour.  

BACKGROUND 
Bellotti and Edwards [4] state that intelligible context-
aware systems are able to represent to their users what they 
know, how they know it, and what they are doing about it. 
Dourish proposed the idea of reflective self-representations 
that are generated by a system and reliably describe its 
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state, while also allowing users to affect that state and 
control the system’s behavior [11].  

There are many approaches to providing intelligibility and 
control, some quite subtle. For example, Google Maps uses 
a growing or shrinking “blue circle” to convey how 
confident it is of the user’s current location. Other basic 
examples of intelligibility can be found in recommender 
systems. Services like Amazon, the App Store, or Youtube 
provide recommendations of related content to their users. 
Users can also ask the system why a certain item (e.g., a 
book, app or video) was recommended to them. 
Additionally, the system offers control to users: they can 
affect the recommender engine’s behaviour by indicating 
that they are not interested in those recommendations. 

Several systems have been developed to support end-users 
in controlling, configuring or programming their ubicomp 
environments (e.g., [8,20]). Further investigation is 
necessary, however, to explore which interaction techniques 
and user interfaces are best suited for this purpose. There 
are a number of ubicomp systems and architectures that 
extend intelligibility and control to end-users. Cheverst's 
IOS system [5] shows confidence levels and visualizations 
of decision tree rules and allows end-users to manipulate 
system parameters. Situations [10] automatically supports 
simple intelligibility and control user interfaces and also 
allows designers to create application-specific user 
interfaces.  

Lim, Dey and Avrahami [15] investigated if why (not) 
questions could be used to improve the intelligibility of 
context-aware systems. Their results suggest that allowing 
users to pose why (not) questions about the behaviour of a 
context-aware system would result in better understanding 
and stronger feelings of trust. In a later study, Lim and Dey 
[14] investigated the different information needs users have 
for context-aware applications under various situations, 
recommending amongst others that why questions should 
be made available for all context-aware applications.  

Ju et al. [13] describe a design framework for reasoning 
about transitions between implicit and explicit interaction. 
They discuss three interaction techniques that allow users to 
overcome errors in system's proactive behaviour: user 
reflection, system demonstration, and override. The first 
two can be seen as interaction techniques for improving 
intelligibility, while the latter is a technique for providing 
control. 

Coutaz [7] proposed the meta-User Interface (meta-UI) 
concept, which is essentially a user interface to support 
intelligibility and control in smart spaces. Coutaz analysed 
several existing systems and argues that there should be 
more attention towards control by end-users and to 
embedding meta-UIs within domain-specific applications.  

DESIGN SPACE 
The systems that were discussed in the previous section 
only represent a single point in the larger design space of 
possible techniques to provide intelligibility and control. In 
order to get a better idea of the different possibilities and 
the design choices that play a role when developing 
interfaces for intelligibility and control, we introduce a 
design space consisting of six dimensions, as shown in 
Figure 1: 

 

Figure 1: Design space for intelligibility and control. 

We begin with a brief overview of each of these six 
dimensions, after which we discuss them in more detail and 
provide examples. 

Timing: Intelligibility and control can be supported at 
different times during the interaction: before, during and 
after events take place. 

Generality: User interfaces and interaction techniques for 
intelligibility and control can be general or domain-specific 
(e.g., techniques for visualising location errors in navigation 
systems). 

Degree of co-location: Support for intelligibility or control 
might be embedded or integrated with the rest of the user 
interface versus external, when users are required to switch 
to a separate interface.  

Initiative: Users may need to explicitly request 
intelligibility information or invoke control techniques 
manually (user), or might automatically be presented with 
these features when necessary (system). 

Modality: Several modalities can be used to help users to 
understand or control the system (e.g. visual, auditory, 
haptic).  

Level of control: The level of control end-users can exert 
over the system varies from intelligibility, where no 
additional control is added beyond intelligibility, over 
counteract, where users can perform the opposite action 
(e.g., undo), to configuration, where users can tweak 



 

 

predefined system parameters, and programmability where 
users can themselves (re-)define how the system works. 

Timing 
Intelligibility information can be provided at different 
phases during the interaction with a ubicomp system. For 
example, consider the case where the system would 
perform a certain action automatically given a certain 
trigger (e.g., showing a personalized calendar on a 
proximity-aware display when a user approaches it). There 
are different points in time at which intelligibility 
information can be provided:  

• Before the action: Users could be offered 
information before the action would take place, 
allowing them to anticipate the system’s 
behaviour. 

• During the action: The system could visualize 
events and actions when they happen, to allow 
users to better understand the flow between 
different components in the system (e.g., how 
different sensors work together). 

• After the action: The user could be offered 
intelligibility information after the action has been 
performed, for example to explain why the system 
took that action. 

For example, Ju et al.’s proximity-aware Range whiteboard 
[13] provides intelligibility and control before and during 
system actions. Range uses a system demonstration 
technique where the system shows the user what it is doing, 
or what it is going to do. When switching between ambient 
mode and the drawing mode, Range uses a transition of the 
whiteboard’s contents to call the user’s attention to the 
mode change, instead of suddenly switching. Moreover, 
while the whiteboard is transitioning between modes, users 
can grab the moving contents to cancel the mode switch 
(override). Additionally, Lim and Dey’s concept of what-if 
questions [16] is intelligibility information that is provided 
before the action.  

An example of intelligibility information that is provided 
after the action, are why questions. Ko and Myers 
developed the Crystal application framework [17] that 
allows programmers to support why questions in their 
applications. A word processor could, for example, allow 
users to pose questions about its more complex formatting 
behaviour (e.g., “Why is this text bold?”). Why questions 
have also been used for context-aware systems [16] and 
ubicomp environments [26]. 

Generality 
Intelligibility or control techniques can be general or 
domain-specific. A simple example of a domain-specific 
intelligibility interface is the way location-based services 
present the user’s current location together with the level of 
uncertainty [1]. For example, the blue circle in Google 

Maps gives users an indication of how certain the system is 
of the user’s current location, depending on the size of the 
circle. This interface tells users that it knows they are 
located somewhere in the circle, but it does not know 
precisely where they are located.  

While domain-specific interfaces might limit flexibility and 
reuse, they might be easier for users to understand as they 
provide a better expressive match. It is, for example, easier 
to estimate the location error using a circle on a map than to 
try to interpret an error percentage. Domain-specific 
interfaces can be more easily integrated into a specific 
application (see also: co-location), which might help users 
remain in the flow of their current task. 

Other examples of domain-specific intelligibility interfaces 
are gesture guides, such as OctoPocus [3]. OctoPocus helps 
users perform gestures by continuously showing the 
possible remaining gesture paths. Similarly, Ju Lee and 
Klemmer’s implementation of user reflection, system 
demonstration and override for the Range whiteboard is 
specifically designed for proximity-aware whiteboards.  

An example of a generic interface for intelligibility and 
control is PervasiveCrystal [26] (see: next section), which 
provides users with the possibility to pose why and why not 
questions about any event occurring in a ubicomp 
environment and offers simple control primitives.  

Co-location 
The co-location dimension refers to the level of integration 
between an interface for intelligibility and control, and the 
application in which it is used. Intelligibility or control 
could be offered in a separate interface (external), or could 
be an integrated part of the application (embedded). In her 
discusson about meta-user interfaces, Coutaz [7] calls this 
dimension the “level of integration”.  

OctoPocus [3], Ju et al.’s techniques [13], and the Google 
Maps location error visualisation are all examples of 
embedded intelligibility interfaces. External interfaces tend 
to offer more possibilities and flexibility, but, unlike 
embedded interfaces, require the user to interrupt their task 
and switch to a separate interface. External interfaces tend 
to be useful for controlling or understanding high-level, 
generic components of a system. An example of an external 
interface is Dey et al.’s a CAPpella tool [8] that allows 
users to program a context-aware system by demonstrating 
its desired behaviour.  

Initiative 
The initiative for showing information to improve the users’ 
understanding can be taken by the system itself or this 
information can be available upon request by the user. 
When the system takes the initiative, it could reveal 
information to draw the user’s attention to a certain event, 
as with Ju et al.’s system demonstration technique [13]. 
Alternatively, the system could provide users with an 
option to receive detailed information if they need it, 



 

 

similar to the way services like Amazon can explain why a 
certain products were recommended to the user. 

There might be several arguments for choosing between 
these two strategies. Automatically providing information 
all the time might be distracting or even annoying for the 
user, depending on the amount of detail that is provided. 
Still, it can be useful in select cases to have access to very 
detailed information to debug the system’s behaviour and 
understand deeper details of how the system works. In this 
case, we would probably like to leave the initiative of 
showing this information to the user, so that the information 
is only there when necessary. On the other hand, simple and 
informative feedback that explains to users what the system 
is doing might be useful to show at all times, even for 
expert users. 

An elegant way of supporting both novices and experts, and 
thereby combining system and user initiative, can be found 
in systems like OctoPocus [3]. This kind of system waits 
for a certain time before it presents the intelligibility 
interface, so that experts who already understand how the 
system works can perform actions very efficiently, but can 
always slow down when they are unsure. 

Modality 
Depending on the domain and the context of use, different 
modalities might be preferred (visual, haptic, auditory). For 
example, when the users need their visual attention 
elsewhere (e.g., while driving), intelligibility or control 
might be better provided using another modality. Most 
systems typically only support intelligibility or control 
using the visual modality.  

Level of control 
There are increasing levels of control that end-users can 
exert over the system. The most basic level of control is 
only intelligibility, where no additional control functionality 
is provided beyond intelligibility. Note that this still allows 
users to intervene by changing their own behaviour based 
on their understanding of how the system works. For 
example, because we understand how a motion-controlled 
light works, we know that we can wave our hands to turn 
the light on again when it goes out. An example of this 
level of control would be the availability of only a why 
questions interface. Based on the understanding gained by 
posing why questions, users could then alter their behaviour 
to exert control. 

The next level of control is counteracting. Systems that 
provide this level of control only allow users to revert the 
system’s actions (e.g., undo). An example of such as system 
is PervasiveCrystal [26] (see: next section). Next, systems 
that allow users to tweak predefined system parameters 
feature the configuration level of control. An example of 
this kind of system is Dey and Newberger’s Situations 
framework [10]. 

The most advanced level of control, programmability, is 
available when users can themselves (re-)define how the 
system works, such as in Dey et al.’s a CAPpella [8]. 

INTELLIGIBILITY APPS: SOME SAMPLES FROM THE 
DESIGN SPACE  

PervasiveCrystal 
PervasiveCrystal [26] is a system that allows users to 
understand the behaviour of a ubicomp environment by 
posing why and why not questions. PervasiveCrystal can 
reason about the causes and consequences of system and 
user actions, based on a rule-based behaviour model, and 
uses this information to automatically generate a list of why 
and why not questions. PervasiveCrystal is built on top of 
ReWiRe [22], an existing framework to dynamically 
compose, deploy and query software components in 
ubicomp environments. It uses an annotated version of 
ReWiRe’s behaviour model that links different rules 
together. The annotations are then processed at runtime to 
build up a model of the system’s behaviour that can be 
easily queried and is used to generate the list of why and 
why not questions. It features displays that are equipped 
with a motion sensor to detect the presence of the user.  

We illustrate how our approach works by means of an 
example scenario, shown in Figure 2. We will follow Bob, 
one of the visitors of the smart museum equipped with 
PervasiveCrystal. When he enters the museum, Bob 
receives a mobile museum guide that can be used to 
interrogate and control the environment. Bob is told that the 
museum features displays that can detect his presence and 
react to motion. 

 

Figure 2: PervasiveCrystal shows a list of available questions, 
based on recent events (A). Answers are generated by linking 
events to what caused them to happen (B.1). Additionally 
users have access to two control mechanisms: they can undo 
operations (B.2) or invoke fine-grained control user interfaces, 
in this case: a light control UI (B.4). 

When Bob approaches one of these displays during his 
museum visit, he waves in front of the screen to play a 
movie, as shown in Figure 2 (scene 1). However, at that 



 

 

time, the lights also go out. Bob does not understand why 
this happens, and is confused (scene 2). Behind the scenes, 
there are several rules that react to context changes (scene 
3). One of the rules plays a movie when the camera detects 
motion. There is also another rule that turns off the lights 
whenever a movie is playing to provide users with a better 
viewing experience. When the first rule executes, its effect 
(playing a movie) causes the second rule to execute and 
turn off the lights. Bob remembers he can use the why 
menu to ask questions about the smart museum’s behaviour 
(scene 4). As seen in Figure 2 (4.A), the why menu shows a 
list of available questions about events together with a 
representative icon. PervasiveCrystal automatically 
generates the list of questions by tracking events that 
occurred (e.g., lights that are switched off). 

The Visible Computer 
Because of the heterogeneous nature of ubicomp 
environments — which often employ several displays, 
speakers, sensors, embedded devices — users might require 
co-located information that tells them what the system is 
doing, when and where it is doing this, and allows them to 
intervene without leaving their current task. 

To explore this idea, we developed a prototype [24] that 
uses steerable projectors to overlay the environment with 
real-time visualizations of actions occurring in the 
environment  (e.g. turning off the lights). Figure 3 shows 
how we used a simple graphical language to visualize the 
relationships between sensors or devices and system 
actions. When an action is executed, an animation is shown 
to visualize the cause(s) and consequence(s) of this action. 
In addition, users can issue a voice command to cancel (or 
undo) the most recent action.  

 

Figure 3: A user looks at an animation that links sensors and 
devices with system actions to explain the system's behavior. 

Each sensor or input/output device (e.g., a camera, speaker, 
display) is visualised at its physical location in the 
environment with an icon and a label. These icons allow 
users to get an overview of the devices that are present in 
their environment. Below the icon of each input device or 

sensor, a separate label is drawn that displays the 
possibilities of the device and its current state using smaller 
icons. Output devices feature only an icon and no separate 
label. The icon of an output device embeds its current state 
(e.g., a light’s intensity displayed as a horizontal bar. Figure 
4 shows how a chain of events is visualised using this 
graphical language. 

 

Figure 4: Visualising a chain of events: touching the screen 
results in a movie being played. This, in turn, results in the 
lights being dimmed. 

The Feedforward Torch 
We have built the Feedforward Torch [25], a prototype to 
explore feedforward. Feedforward is a specific type of 
intelligibility information that informs the user about what 
the result of an action will be [23]. If we consider the 
timing dimension, feedforward is thus intelligibility 
information that is provided before an event takes place. 
While feedback tells the user what happened, feedforward 
tells the user what will happen. Well-designed feedforward 
is an effective tool for bridging Norman’s Gulf of 
Execution [18] – the gap between a user’s goals for action 
and the means for executing those goals [23]. Ju et al. [13] 
also talk about feedforward as a specific variation of their 
user reflection technique.  

The Feedforward Torch is a combination of a smartphone 
and mobile projector that provides feedforward about the 
objects and interactions in the user’s environment. With the 
Feedforward Torch, we do not focus exclusively on 
ubicomp environments, but also target existing legacy 
systems in our daily environments. We argue that these 
environments require intelligibility as well. If users have 
difficulties interacting with the system, having to fix this 
after deployment is very cumbersome and expensive. 
Physically changing the interface design to include better 
feedforward would imply fixing every instance of the 
system separately. The Feedforward Torch augments the 
systems during usage and does not require physical changes 
in order to overcome design flaws of legacy systems. 

Users can point the Feedforward Torch at objects in their 
environment and reveal feedforward information about 
them, as if they were located under a spotlight. Users are 
shown under which conditions actions associated with the 
object will be executed by the system (e.g., a displacement 
in time or space), so that they can anticipate and adapt their 
behaviour, if necessary. Animations are used to better 
convey the effect an action will have. The Feedforward 



 

 

Torch does not extend the features of a legacy system; its 
sole focus is on guiding the user to use the actual system. 

The main difference between the Feedforward Torch and 
the Visible Computer, which used steerable projectors, is 
the fact that the Feedforward Torch places the initiative for 
showing information with the user. Figure 5 shows how the 
Feedforward Torch can be used to understand an array of 
light switches. Like in the Visible Computer prototype, 
information is projected on and around the system, so that 
users do not need to switch their attention to another 
interface and can continue to focus on the task they are 
performing (co-location: embedded). 

 

Figure 5: A user points at a light switch using the Feedforward 
Torch to understand what will happen if he presses the switch.  

Figure 6 shows the Feedforward Torch prototype, 
consisting of a Samsung Galaxy S smart phone, a 
MicroVision SHOWWX+ laser pico projector and a laser 
pointer to be able to point the device at physical objects. A 
custom casing was made in order to support one-handed 
interaction. We used a Wizard-of-Oz control interface to 
show the right content to the user at the right time in order 
to simulate a fully working object recognition mechanism. 

 

Figure 6: The Feedforward Torch prototype (right) and 
Wizard-of-Oz control interface (left). 

MAPPING THE DESIGN SPACE 
In Figure 7, we show how the different systems that were 
discussed in this paper fit into the proposed design space. 
We will discuss each of the six dimensions. 

 

Figure 7: Mapping the different system or techniques in the 
design space for intelligibility and control 

Timing: With respect to timing, there is quite some 
diversity. There are a few techniques such as those of Ju et 
al. [13], OctoPocus [3] or Cheverst’s IOS system [5] that 



 

 

span multiple alternatives of the timing dimension, but most 
techniques only offer a specific moment in time at which 
intelligibility is provided. Of course, ideally, systems 
should be intelligible about past, present and future events.  

Generality: We covered a variety of domain-specific and 
general interfaces in our design space. Some systems or 
techniques can provide both domain-specific and general 
intelligibility, e.g., recommender systems, what if questions 
and Situations [10]. 

Degree of co-location: We notice that most domain-specific 
interfaces are also embedded (e.g., the location error 
visualisation in Google Maps). However, this is not always 
the case. For example, Rodden’s jigsaw editor [20] is a 
domain-specific interface for controlling a smart home, but 
is nevertheless external.  

Initiative:  Most systems either provide intelligibility 
automatically, or allow the user to request detailed 
information when necessary. As discussed earlier, some 
systems combine both approaches to support a flexible 
transition from novice users to experts, such as OctoPocus 
[3]. 

Modality: It is apparent that most techniques rely on the 
visual modality. There are only a few systems that provide 
intelligibility through other means, and even then, these are 
providing visual information as well (e.g., the Visible 
Computer and the Feedforward Torch). 

Level of control: There are a number of systems that only 
provide intelligibility (e.g., Google Maps, the Feedforward 
Torch, OctoPocus) without any control mechanism. On the 
other end of the spectrum, there are very powerful systems 
such as Rodden’s jigsaw editor [20], IOS [5] and a 
CAPpella [8]. However, these techniques usually employ 
an external interface and are very general. One could argue 
whether these techniques are really usable by non-technical 
users. 

LESSONS LEARNED 
In what follows, we reflect on our experiences from 
conducting first use studies with the different systems 
discussed earlier (PervasiveCrystal, the Visible Computer, 
and the Feedforward Torch). We discuss the lessons learned 
with respect to the previously introduced design space. 

PervasiveCrystal  
We learned that textual explanations are not always ideal. 
Automatically generated explanations can sometimes be 
confusing to users, especially when they describe a long 
sequence of events that caused a system action, or when 
double negations are involved (e.g., “The lights didn’t go 
out because the movie didn’t start playing”). While there 
are a number of strategies to overcome this problem 
(simplifying or combining several explanations), we believe 
some situations might be too complex to explain solely 
using text. 

Another problem users faced is that the why questions 
menu quickly became cluttered due to many events firing in 
a short time span. This made it hard for users to find the 
question they wanted to ask. Unlike desktop applications 
that typically use explicit interaction, ubicomp 
environments use implicit interaction and sensors that 
trigger many events (e.g., a motion sensor). While these 
questions could be clustered, it might still be hard for users 
to find the question about the event that they are interested 
in. With respect to the control primitives, participants also 
found it hard to predict the effect of invoking undo and do, 
after which we used more concrete labels (e.g., “Turn on 
lights” instead of “Undo”). The fact that the effect of the 
undo and do actions was hard to predict might also be due 
to the external nature of the interface. Why questions that 
are embedded into specific applications (e.g., the word 
processor built with Crystal [17]) might be less 
disconnected from the user’s task. 

The Visible Computer 
We ran an informal study with five participants to gather 
feedback about the suitability of our approach of visualizing 
the system’s behaviour using steerable projectors. Subjects 
were asked to explain how the system worked in three 
different situations, after having seen the visualization. Four 
out of five subjects could describe the system's behaviour 
correctly for each of the three situations. This promising 
result could indicate that a visual, embedded way of 
presenting how the system works might help users to form a 
better mental model, which is consistent with findings by 
Rehman et al. [19]. Participants were generally happy with 
the visual representation, but sometimes had difficulties 
with keeping track of visualizations across multiple 
surfaces. One participant mentioned she received too much 
information, leaving her overwhelmed. This might indicate 
that we should be careful when automatically providing 
detailed explanations (system initiative). Finally, several 
subjects experienced difficulties with invoking the cancel 
feature, possibly because they were not familiar with 
speech interaction (modality: auditory). 

The Feedforward Torch 
We also conducted a small study with the Feedforward 
Torch. We used a Wizard-of-Oz control interface to change 
the contents of the feedforward display. 

All participants were able to complete the tasks and several 
participants mentioned they would have been unable to do 
so without the Feedforward Torch or additional help. Two 
participants stated that the system would have come in 
handy in a large city: “When I had to use the London 
Underground for the first time, the Feedforward Torch 
would have been useful to help me figure out how to use the 
ticketing machine. Now, I had to observe other passengers 
first before I knew how the system worked and what I had to 
do.”  



 

 

Participants liked the fact that information was overlaid on 
the physical environment (embedded), so they did not have 
to switch between the smartphone display and the system or 
device they had to operate. One of the advantages of mobile 
projection that was mentioned during the semi-structured 
interviews was the fact that groups of people could explore 
the projection together. Nevertheless, projection only 
worked well in low-lighting conditions. The use of 
animations was appreciated, especially when the result of a 
certain action would happen over time or outside the user’s 
periphery. Finally, participants strongly preferred 
visualisations to textual explanations in the encountered 
scenarios, as they considered reading textual information to 
be more time-consuming. 

We can conclude that the choice between different 
combinations of each of these dimensions for intelligibility 
and control interfaces can have a large impact on the user 
experience. Designers can use our design space to consider 
these different alternatives and choose the one that fits their 
application best. 
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