
I Bet You Look Good on the Wall: Making the
Invisible Computer Visible

Jo Vermeulen, Jonathan Slenders, Kris Luyten, and Karin Coninx

Hasselt University - tUL - IBBT,
Expertise Centre for Digital Media,

Wetenschapspark 2, B-3590 Diepenbeek, Belgium.
[jo.vermeulen,kris.luyten,karin.coninx]@uhasselt.be

jonathan.slenders@student.uhasselt.be

Abstract. The design ideal of the invisible computer, prevalent in the
vision of ambient intelligence (AmI), has led to a number of interaction
challenges. The complex nature of AmI environments together with lim-
ited feedback and insufficient means to override the system can result in
users who feel frustrated and out of control. In this paper, we explore the
potential of visualising the system state to improve user understanding.
We use projectors to overlay the environment with a graphical repre-
sentation that connects sensors and devices with the actions they trigger
and the effects those actions produce. We also provided users with a sim-
ple voice-controlled command to cancel the last action. A small first-use
study suggested that our technique might indeed improve understanding
and support users in forming a reliable mental model.

1 Introduction

The visions of ambient intelligence (AmI) and ubiquitous computing (Ubicomp)
share the goal of moving computers into the background, thereby making them
effectively invisible to end-users. This design ambition is clearly present in Mark
Weiser’s vision of Ubicomp [14] as well as in AmI-oriented efforts such as the
EU-funded Disappearing Computer Initiative [12].

If computers are to be so natural that they become invisible in use, they
will often need to function on the periphery of human awareness and react on
implicit input. This kind of system is called context-aware [11]: it is able to
interpret and adapt to the user’s current situation or context. These systems
often react on a context change by taking a (presumably desired) automatic
action on behalf of the user. In an ideal world, where the sensed context would be
100% accurate, users would then indeed not “notice” the computers embedded in
their environment, but would only experience the right actions being “magically”
performed at the right time.

The previous assumption is unrealistic, however. There are many aspects of
context (e.g. human aspects such as our mood) that cannot reliably be sensed
or inferred by machines [4]. Moreover, our behaviour is unpredictable and im-
possible to model accurately by computers [13]. From these arguments, it can be

jvermeulen
Text Box
The original publication is available at http://springerlink.com.



concluded that it is infeasible to allow context-aware computer systems in Ubi-
comp or AmI environments to act without user intervention. However, before
users are able to intervene, they should first understand how the system works
and what it is trying to do. When something goes wrong, the system needs to
present itself and the way it works to end-users – or essentially become visible.

Making clear how an AmI environment functions is not always easy to achieve
because of the heterogeneous nature of these environments (they often contain
several displays, speakers, sensors and computers of different sizes) and their
complex behaviour. Adding to this problem is the fact that due to the focus on
the invisible computer, Ubicomp and AmI systems often have little support for
traditional user interface concerns such as feedback, control, and indeed “visibil-
ity” [3]. We are not the first to make these observations: a number of researchers
have pointed out problems along these lines such as Bellotti et al. [4,3], Rehman
et al. [9] and Barkhuus and Dey [2]. The heart of the problem lies in the fact
that the lack of visibility inhibits users from forming a correct mental model of
the system and exacerbates the Gulf of Execution and the Gulf of Evaluation [7].
As a consequence, users have difficulties predicting the behaviour or even the
available features of the system [9]. Moreover, there is often no way for the user
to override the actions taken by the system, which results in users who feel out of
control [2]. Bellotti et al. [4] propose two key principles that are necessary to im-
prove the usability of context-aware applications: intelligibility (or the system’s
capability of being understood) and control.

In this paper, we present a technique to make the invisible computer visible
for end-users. We use projectors to overlay the environment with a graphical
representation that shows the location and state of the different sensors and in-
put/output devices such as displays or speakers. When the system acts on behalf
of the user, an animation is shown that connects a system action with its cause
and effect. Of course, constant visualisations might be distracting and contrary
to Weiser’s idea of calm computing [14]. We therefore believe our technique is
useful mainly as a “debug mode” for end-users. The visualisations might be hid-
den when users have gained more experience with the system, and be called upon
again whenever users have difficulties understanding the system’s behaviour or
when they want to know more about the reasoning behind a certain system ac-
tion. Our technique allows users to consult the system state whenever necessary,
thereby improving the system’s intelligibility. Users receive real-time feedback
about actions that happen, when they happen. In addition, a primitive con-
trol mechanism is provided that allows users to cancel an action in progress.
We explored the usefulness of our technique in an informal first-use study. Re-
sults suggested that it might indeed improve understanding and support users
in forming a reliable mental model.

2 A Graphical Representation of Behaviour

A simple graphical language was developed to visualize the relationships between
sensors or devices and the actions executed by the system. This allows users to



get an overview of the system state at a glance. When an action is executed by
the system, an animation is shown to reveal the links between this action and
the different devices or sensors in the environment.

2.1 Visualising the Environment and Its Behaviour

Each sensor or input/output device (e.g. a camera, speaker or display) is visu-
alised at its physical location in the environment with an icon and a label . These
icons allow users to get a view of the devices that are present in their environ-
ment. Below the icon of each input device or sensor, a separate label is drawn
that displays the possibilities of the device and its current state using smaller
icons. Output devices feature only an icon and no separate label. The icon of
an output device embeds its current state. For example, Fig. 1(a) shows an icon
and label for a webcam (an input device) on the left and an icon for a light (an
output device) on the right. In this (fictional) example, the webcam can detect
the events “waving” and “moving”, as indicated by the small icons in the label.
In Fig. 1(a), the motion detection state is active and therefore highlighted. The
light’s state corresponds to its current intensity and is displayed as a horizontal
bar.

(a) Motion in front of the webcam (input) triggers the
light (output). The event “waving” of the webcam is
now inactive, but could trigger another action

(b) A chain of events: touching the screen results in
a movie being played (on the same screen). This, in
turn, results in the lights being dimmed.

Fig. 1. Mockups of example trajectory visualisations.

We define a trajectory as a visualisation between two or more objects in the
environment. A trajectory consists of four parts: a source device; the event that
happened at this device; an action to be executed; and one or more target devices
that are impacted by the action. Between each of these, lines are drawn. Dotted



lines are used between events and actions, while connections between devices
and other objects use solid lines.

An example trajectory is shown in Fig. 1(a). Here the webcam detects motion,
which triggers an action that turns on the lights. This action, in turn, impacts
the light on the right side of the figure. Note that the small state icons are
repeated together with a textual description. The “Waving” state is shown semi-
transparently to indicate that it is not active. A bit further to the right, a
graphical representation of the action is shown, connected to the light it turns on.
The lines in a trajectory will be animated from source to effect, thereby possibly
spanning multiple surfaces. Device icons and labels will always be shown, even if
they are not active (in which case they are displayed semi-transparently). Other
labels (e.g. action labels) only become visible when the connecting line crosses
them. Animations will slowly fade out after they have been completed.

Trajectories can also visualize multiple actions which are triggered in se-
quence. Fig. 1(b) shows a trajectory with two sequential actions. In this situa-
tion, touching the screen causes a movie to be played on this screen. The action
of playing a movie will itself cause another action to be executed: one that dims
the lights for a better viewing experience. Likewise, it is possible to visualize
more complex rules that combine multiple sensors using boolean operators (e.g.
AND, OR).

2.2 Overriding System Actions: The Cancel Feature

Fig. 2.2 shows a mockup of the cancel command in action. Since the cancel
feature is voice-controlled, it is displayed as a microphone sensor icon. The only
possible state is an invocation of the cancel feature when it recognizes the word
“cancel”, as indicated in the corresponding label. When an action is cancelled
the microphone will turn and shoot at the icon corresponding to the effect of the
action, resulting in a hole in this icon. The shooting animation might again span
different surfaces to reach its target. This kind of visual feedback shows users in
a playful way that the effect that the action had on the environment has been
undone.

Fig. 2. When the action “light off” is cancelled, the microphone shoots a hole in the
light icon.



2.3 Expressiveness and Limitations

The graphical notation was deliberately kept simple. It mainly targets systems
that encode their behaviour as a list of if-then rules, which is a common approach
to realizing context-awareness [5]. Our behaviour representation suffers from two
main shortcomings. First, we are currently unable to visualize the reasoning be-
hind machine learning algorithms, another frequently used approach to realize
context-aware systems. Secondly, as with any visual language, scalability is an
issue. When the notation would be used to visualize a very complex network of
connected sensors and devices, the result could become too complex to compre-
hend for users. Despite these limitations, we believe that our notation is useful
for exploring the potential of visualising the behaviour of AmI environments.

3 Implementation

We use several static and steerable projectors to overlay the physical environ-
ment with our graphical representation. The advantage of using projectors is that
annotations can be displayed on any surface in the environment without requir-
ing users to wear head-mounted displays or carry specialized devices. For more
details on how to set up this kind of system, we refer to the existing literature
(e.g. [8]). An overview of our implementation is given in Fig. 3.

Fig. 3. Software applications in the AmI environment can send requests to the render-
ing engine to make their behaviour visible to end-users.

Because we were mainly interested in exploring the potential of our technique,
our current implementation was deliberately kept simple. The most important
software component in our system is the rendering engine. It is implemented
as a central service that allows applications to make their behaviour visible to
end-users. The rendering engine is responsible for overlaying the environment



with a visualisation of all devices and sensors, and for showing animations (or
trajectories) between these elements when a software application executes an
action. For this, it relies on a 3D model of the environment and an environment
configuration file describing the sensors and devices in the environment. The 3D
model of the environment is used to determine which of several steerable and
static projectors need to be used and what image corrections need to be applied
to display the annotations. The configuration file encodes the position of each
device and sensor in the environment, together with their icons, possible states
and a number of predefined trajectories. When software applications need to
visualize a change of state in a device or the execution of a certain action, they
send a request to the rendering engine containing an XML description of the
required state change or trajectory.

4 Evaluation

4.1 Participants and Method
We ran an informal first-use study to investigate the suitability of our technique
for understanding the behaviour of an AmI environment. Note that the aim of
the study was to identify major usability problems and to drive design iteration,
rather than to formally validate specific claims. The experiment was carried out
in a realistic Ubicomp environment: an interactive room which features differ-
ent kinds of sensors, and various means to provide users with information. We
deployed a number of applications on the room’s server which used sensors to
steer other devices in the environment (e.g. motion detection with a webcam for
controlling the lights). Applications were developed with Processing1 and com-
municated with each other and the ambient projection system over the network.

Fig. 4. A user looks at an ongoing animation.

The study group comprised 5 voluntary participants from our lab whose
ages ranged from 24 to 31 (mean = 27.8); three were male, two female. All
1 http://www.processing.org/



subjects had general experience with computers. Four out of five had experience
in programming, while the fifth participant was a historian. Each individual
study session lasted about 40 minutes. First, subjects were asked to read a
document explaining our technique. Afterwards, subjects were presented with
three situations in which they had to understand the environment’s behaviour
using our technique. After completing the test, participants had to fill out a
post-test survey. The three tasks subjects had to perform during the study were:

– Task 1: Subjects were asked to press a play button on a touch screen, after
which a movie would start to play in the environment. This, in turn, triggered
an action that turned off the lights for better viewing experience.

– Task 2: Subjects were given the same instructions as in the first task, but
were also told to find a way to turn the lights back on afterwards. They
were expected to use the cancel functionality to achieve this effect, which
was explained in the introductory document.

– Task 3: In the last task, subjects were asked to walk up to a display case and
were told that they would notice something changing in the environment.
The display case was equipped with a webcam for motion detection, which
would turn the lights on or off depending on the user’s presence.

Subjects were allowed to explore the system and perform each task several times
until they felt that they had a good understanding of what was happening. After
completing a task, participants received a blank page on which they had to
explain how they thought that the different sensors and devices were connected.
This allowed us to get an idea of each participant’s mental model. Subjects were
free to use drawings or prose (or a combination of both).

Two of the sensors used during the test were implemented using the Wizard
of Oz technique: the voice-controlled cancel feature and the webcam motion
detection sensor. The other applications and devices were fully functional.

4.2 Study Results

In our post-test survey, participants ranked our technique highly for being useful
to understand and control what happens in an AmI environment (Q7, mean =
4.2, median = 4 on a 5-point Likert scale, σ = 0.447); and for not being confusing
(Q8, mean = 4.2, median = 5, σ = 1.095). In general, participants indicated that
they understood how to use our visualisation technique (Q1, mean = 4.6, median
= 5, σ = 0.548); that they found the visualisation easy to understand (Q3, mean
= 4, median = 4, σ = 0.707); and that it provided them with the information
they wanted to know (Q4, mean = 4, median = 4, σ = 1.0). However, responses
were less conclusive about the cancel feature (Q5 and Q6, σ > 1.7 in each
case), where one participant (P5) gave the lowest score twice. Detailed results
are presented in Fig. 4.2. Note that the small sample size (n = 5) causes the
standard deviation (σ) to be relatively high overall. Four out of five participants
described the system’s behaviour correctly for each of the three tasks. The fifth
participant (P5) described the first and third task correctly, but experienced
difficulties with the second task.



(a) Questions used in the survey.

(b) Post-test questionnaire results. Participants are
numbered from P1 to P5, questions from Q1 to Q8.

Fig. 5. Post-test questionnaire.

4.3 Discussion

Subjects were generally happy with our visualisations. One of the test partic-
ipants mentioned that he found it “convenient to follow the lines to see what
is happening”, while another said: “it was clear to see which action had which
effect”. As mentioned before in Sect. 4.2, four out of five subjects were able to
correctly describe the system’s behaviour. We feel that this is a promising re-
sult, especially since the participant without a technical background (P2) was
among these four. It might indicate that visualising the behaviour of an AmI
environment can help users to form a correct mental model, which is in line with
the findings of Rehman et al. [10]. However, further investigation is necessary to
validate this claim.

The study also revealed a few shortcomings in our current prototype. Three
subjects reported problems with recognizing the features of devices or sensors
using its icons. Both the touch screen and cancel icons were found to be unclear.

During the study, we noticed that several participants experienced difficul-
ties with keeping track of visualisations across multiple surfaces. Sometimes the
visualisation would start outside subjects’ field of view, which caused them to
miss parts of the visualisation. A possible solution might be to use spatial audio
to guide users’ attention to the area of interest.

One participant (P2) commented that she sometimes received too much in-
formation, which confused her (as indicated by the neutral score on questions
Q3, Q4 and Q8). She referred to the first task, in which a “click” on the touch



screen was visualised as causing the movie to start playing. It might be useful
to disable visualisations for actions which occur often and are obvious to users,
or to implement a generic filtering mechanism.

Finally, several subjects had difficulty in invoking the cancel feature. This is-
sue might be ascribed to two causes: an unclear icon (as mentioned before) and
the unfamiliarity of participants with speech interaction. One user (P4) men-
tioned that he felt “uneasy using a voice-controlled command”, because “he was
used to clicking”. Both the relatively low score by participant P4 on question
Q6; and the low scores on questions Q5 and Q6 by participant P5 and his incor-
rect explanation of the system’s behaviour, might be attributed to the difficulty
of invoking the cancel command. However, further studies will be necessary to
identify the exact problems that subjects face when using the cancel feature.

5 Related Work

In recent years, increasing awareness of the difficulties users encounter in AmI or
Ubicomp environments gave rise to a number of techniques that try to address
these issues. In what follows, we discuss interaction techniques related to the ones
presented in this paper. Rehman et al. [10] describe how a location-aware Ubi-
comp application was enhanced with augmented reality visualisations to provide
users with real-time feedback. An initial user study compared the augmented ver-
sion of the application with the original one. Results suggested that the visual
feedback makes for a more pleasant user experience, and allows users to form
a better mental model, which is in line with our findings. The main difference
with our work is that the visualisations of Rehman et al. are application-specific,
while ours could be used for any application. There have been a number of other
studies that deal with issues of intelligibility, control and trust. For example,
Antifakos et al. [1] found that displaying the system’s confidence increases the
user’s trust, while Lim et al. [6] suggested that answering why (not) questions
posed by users could improve the intelligibility of context-aware systems. We
feel that these techniques could be combined with our approach. Further inves-
tigation will be necessary to determine the ideal level of user involvement and
the most suitable feedback mechanisms in different situations.

We are not the first to visualise the behaviour of context-aware systems.
iCAP [5], a design tool that allows end-users to prototype context-aware appli-
cations, also represents context-aware behaviour rules visually. With our system,
however, users see a visualisation of the system’s behaviour in real-time and in-
situ, when and where the events take place.

6 Conclusions and Future Work

The implicit nature of interaction and the invisibility of the system in AmI and
Ubicomp environments have led to a number of interaction challenges. In this
paper, we presented a technique that overlays the environment with a graphical
representation of its behaviour. This allows users to view the system state at



a glance and receive real-time feedback about events and actions that occur in
the environment. Additionally, we provided users with a basic control feature
that allowed them to cancel the last action. A small first-use study suggested
that our visualisation might indeed improve understanding and support users in
forming a reliable mental model. The study also revealed a few shortcomings of
our system which we plan to address in a future design iteration. Finally, we are
aware of the limitations of this study and plan to conduct further experiments
to validate our findings.

References

1. Stavros Antifakos, Nicky Kern, Bernt Schiele, and Adrian Schwaninger. Towards
improving trust in context-aware systems by displaying system confidence. In Proc.
MobileHCI ’05, pages 9–14. ACM, 2005.

2. Louise Barkhuus and Anind K. Dey. Is context-aware computing taking control
away from the user? three levels of interactivity examined. In Proc. Ubicomp ’03,
pages 149–156. Springer, 2003.

3. Victoria Bellotti, Maribeth Back, W. Keith Edwards, Rebecca E. Grinter, Austin
Henderson, and Cristina Lopes. Making sense of sensing systems: five questions
for designers and researchers. In Proc. CHI ’02, pages 415–422. ACM, 2002.

4. Victoria Bellotti and W. Keith Edwards. Intelligibility and accountability: human
considerations in context-aware systems. Hum.-Comput. Interact., 16(2):193–212,
2001.

5. Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. iCAP: Interactive
Prototyping of Context-Aware Applications. In Proc. Pervasive ’06, pages 254–271.
Springer, 2006.

6. Brian Y. Lim, Anind K. Dey, and Daniel Avrahami. Why and why not explanations
improve the intelligibility of context-aware intelligent systems. In Proc. CHI ’09.
ACM, 2009.

7. Donald A. Norman. The Design of Everyday Things. Basic Books, September
2002.

8. Claudio S. Pinhanez. The everywhere displays projector: A device to create ubiq-
uitous graphical interfaces. In Proc. UbiComp ’01, pages 315–331. Springer-Verlag,
2001.

9. Kasim Rehman, Frank Stajano, and George Coulouris. Interfacing with the invis-
ible computer. In Proc. NordiCHI ’02, pages 213–216. ACM, 2002.

10. Kasim Rehman, Frank Stajano, and George Coulouris. Visually interactive
location-aware computing. In Proc. Ubicomp ’05, pages 177–194. Springer, 2005.

11. B. Schilit, N. Adams, and R. Want. Context-aware computing applications. In
Proc. WMCSA ’94, pages 85–90. IEEE Computer Society, 1994.

12. Norbert Streitz, Achilles Kameas, and Irene Mavrommati. The Disappearing Com-
puter: Interaction Design, System Infrastructures and Applications for Smart En-
vironments. Springer-Verlag, 2007.

13. Lucy A. Suchman. Plans and situated actions: the problem of human-machine
communication. Cambridge University Press, 1987.

14. Mark Weiser. The computer for the 21st century. Scientific American, 265(3):66–
75, September 1991.




