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Abstract. Semantic service descriptions have paved the way for flexible 

interaction with services in a mobile computing environment. Services can be 

automatically discovered, invoked and even composed. On the contrary, the 

user interfaces for interacting with these services are often still designed by 

hand. This approach poses a serious threat to the overall flexibility of the 

system. To make the user interface design process scale, it should be automated 

as much as possible. We propose to augment service descriptions with high-

level user interface models to support automatic user interface adaptation. Our 

method builds upon OWL-S, an ontology for Semantic Web Services, by 

connecting a collection of OWL-S services to a hierarchical task structure and 

selected presentation information. This allows end-users to interact with 

services on a variety of platforms. 

Keywords: Model-based user interface development, Semantic web services, 

Screen layout, Automatic generation of user interfaces, User interface design, 

Ubiquitous computing 

1   Introduction 

In this paper, we introduce a framework to design services that automatically present 

a suitable user interface (UI) on a wide variety of computing platforms.  

The main objective of our system is to allow mobile users to flexibly interact with 

services in a city environment. A city environment is often very volatile. Users come 

and go, carrying with them different devices and having different needs for the 

resulting user interface (e.g. a visually handicapped person might prefer speech 

interaction). 

By service, we refer to an application that provides useful functions to end-users. 

Users interacting with these services use a variety of devices with different operating 

systems and user interface toolkits. A computing platform is the combination of a 

device, operating system and toolkit. The user interface for a service thus runs on a 

computing platform. 
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The city environment we described roughly corresponds to the vision of ubiquitous 

computing [26]. Its goal is for users to move through their environment, finding 

resources and services as they go, and to have those services provided in the context 

of their physical environment. This vision is slowly becoming a reality with the 

increasing market penetration of ever more capable mobile devices, the availability of 

advanced sensors and cheaper network access. 

Semantic service descriptions are more and more used to describe services in a 

ubiquitous computing environment. Discovering, invoking and even composing these 

services based on their semantics has already proven effective. Unfortunately, the 

resulting user interface was left out of the equation. Usually, the user interface for 

interacting with a service is still designed by hand. This seriously decreases the 

flexibility of the system. Designing each user interface by hand requires prior 

knowledge of the available services, their inner workings and possible service 

compositions, not to mention the computing platform where the user interface has to 

be deployed and the context-of-use. 

People will use services as they become available. However, the designers of a 

service may have never anticipated the user's device as a target platform. It is not 

reasonable to require services to have a custom-made user interface available for each 

possible situation, neither is it reasonable the other way around, to require each target 

platform to support every possible service. A more general solution is needed. 

Our approach uses existing metadata about semantic web services and custom, 

high-level annotations about the resulting user interface, to allow for advanced 

adaptation to any target platform. These custom annotations link user interface 

models with the logical components of the service. We call the resulting service 

description a service-interaction description. 

We describe three contributions in this work: 

 The combination of semantic service descriptions with a model-based user 

interface development approach. While annotating service descriptions with 

user interface information has been explored before, the use of model-based 

techniques results in a higher degree of abstraction, enabling adaptation to any 

target platform. 

 The creation of an extensible semantic network1 of presentation information 

which is used to model an extra layer of abstraction on top of the User 

Interface Markup Language (UIML). By providing the link between the 

abstract and concrete presentation information, we are able to perform an 

automatic mapping from the former to the latter. 

 A hierarchical and reusable graphical layout model that describes layout on a 

concrete level while keeping the interface flexible. We obtain this through the 

use of spatial constraints and by connecting the layout to the abstract user 

interface. With this we attempt to comply to the plasticity requirements 

inherent in user interfaces for services that have to be deployed on a variety of 

platforms. 

The remainder of the paper is organized as follows. The next section discusses 

related work. Then, we give an architectural overview of our approach. Subsequently, 
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semantic relations between these concepts. 



the details of service-interaction descriptions are discussed (Sect. 4). Sect. 5 gives an 

overview of how high-level user interface models are transformed into a concrete user 

interface. First, we describe the central model in our approach: an annotated task 

model which will be used to extract the dialog model (Sect. 5.1). Secondly, we 

introduce the semantic network built on top of UIML and explain how it can be used 

to perform automatic widget selection (Sect. 5.2). Next, we discuss layout templates 

which can be used to position the selected widgets for the graphical modality 

(Sect. 6). After presenting the main ideas, we provide a walkthrough of the design of 

a photo sharing service using our system (Sect. 7). Finally, we draw some conclusions 

while looking ahead for possibilities in future work. 

2   Related Work 

Much work has been done in combining service descriptions with user interface 

information. We do not aspire to give a complete overview of the existing work in 

this area. Yet, we have selected a couple of notable examples which we feel are most 

relevant for this paper. We believe our approach is unique in that the use of high-level 

user interface models results in a higher level of abstraction while still offering the 

possibility for manipulating the final presentations. In addition, by building on 

semantic web services it is possible to leverage the existing work in automated 

discovery, invocation, composition and monitoring of these services. 

XWeb is inspired by the architecture of the World Wide Web. It allows a variety of 

interactive platforms to communicate with services by means of a uniform 

protocol [8]. Service providers specify XViews that define the interaction with the 

data of the service, in a device-independent manner. The clients themselves decide 

how to render these XViews. A drawback of XWeb is that each client must know 

when to request the correct XView. There is no information about the structure of the 

user interface, and in which way an end-user will interact with the service. We, on the 

other hand, do provide this information through the task and dialog model. 

Khushraj et al. [14] also use OWL-S service descriptions and augment them with 

user interface information to generate personalized user interfaces. Their system is 

oriented towards automated form-filling based on context information, which means 

the user interface annotations are too concrete to be useful for the problems that are 

targeted in our approach. 

ICrafter [23] is an architecture to select, generate and/or adapt service user 

interfaces at runtime. The authors also state that they support aggregation of service 

UIs. User interface generators can be written for patterns of services, which are 

services conforming to a common programmatic interface. In fact, this comes down to 

providing the same user interface for a collection of services with similar semantics, 

instead of merging two existing service UIs. Semantic web services already solve the 

problem of composing the functional descriptions of two services, but in a more 

generic way. A disadvantage of ICrafter is the fact that the appliance-specific UI 

generators have to be programmed by hand. This means that whenever a new target 

platform has to be supported, a corresponding UI generator needs to be created. The 

use of a concrete abstraction layer (UIML in our approach) solves this problem. 



Manolescu et al. [21] describe a model-driven design and deployment process for 

integrating web services with web applications that have a predefined user interface. 

Another example of the combination of WSDL service descriptions and user interface 

models is the CATWALK framework [25]. This framework mainly concentrates on the 

creation of the actual web pages that interact with the services. 

3   Architectural Overview 

The work we present in this paper enables users to flexibly interact with services. Our 

approach is centered on the combination of semantic service descriptions and high-

level user interface models [10]. Fig. 1 illustrates how the system can create a suitable 

user interface to allow an end-user to interact with a particular service.  

 

 

 

Fig. 1. Architectural overview. 

The client device on the right wants to make use of a particular service. To do so it 

sends a service-interaction request to the Service Manager. This request consists of a 

description of the client platform's interactive capabilities, together with a reference 

the service it wants to address. First, the Service Manager looks up the correct 

service-interaction description which consists of both the functional description and 

the user interface information. Then, the service's high-level user interface 

information is combined with the knowledge of the client's interaction capabilities to 

form a concrete user interface for the client platform. This transformation is 

performed at runtime. Finally, the Service Manager sends a service-interaction 

response to the client, containing the user interface for the requested service. 

The next section will discuss the creation of service-interaction descriptions. 

Afterwards, Sect 5 and 6 will explain in detail the transformation of high-level user 

interface information into a concrete user interface. 



4   Service-interaction Descriptions 

The first step in our approach is to extend service descriptions with user interface 

information. First, we define the terms web service and service description. The 

World Wide Web Consortium (W3C) defines a web service as “a standard means of 

interoperating between different software applications, running on a variety of 

platforms and/or frameworks” [15]. A web service generally provides a service 

description, which includes a description of its interface among other information 

(e.g. the URL2 where the service can be reached). Most existing web services use the 

Web Service Description Language (WSDL)3 for this purpose. 

Although it is possible to augment WSDL with user interface information (as 

demonstrated by Kassof et al. [13]), WSDL's lack of semantics makes it very difficult 

to generate a suitable user interface. The Semantic Web is a vision of the next 

generation of the World Wide Web, characterized by formally described semantics 

for content and services [2]. These semantics are described by knowledge 

representation languages such as the Resource Description Framework (RDF)4 and 

the Web Ontology Language (OWL)5 RDF and OWL, in turn, refer to ontologies, 

specifications of conceptualizations [11], which enable reasoning through the use of 

logic rules. Semantic web services originate from the augmentation of web service 

descriptions with formal semantics. The extra semantics facilitate the automation of 

discovery, invocation, composition and monitoring of these services. It is exactly this 

new “extension” that enables us to automatically generate suitable user interfaces for 

web services. First, the added semantics are useful for selecting an appropriate 

presentation (e.g. the meaning of inputs and outputs). Secondly, we can easily link the 

service with our own semantics, which is in this case the high-level user interface 

information. We chose to use OWL-S6, an OWL-based web service ontology. An 

OWL-S service can be mapped to a concrete realization of the service (such as a 

WSDL description). This means existing web services can be reused and extended 

with an OWL-S description. 

We should note however that there is an important difference between an end-

user's perception of a service and what is described in an OWL-S service description. 

For example, the Google search WSDL description7, defines three basic operations: 

doGetCachedPage, doSpellingSuggestion, and doGoogleSearch. If 

we convert this WSDL file to OWL-S, we end up with three different OWL-S 

services (one for each operation). It is not possible to describe these operations as a 

single OWL-S service since they each have different inputs and outputs. After all, an 

OWL-S service advertises itself by its functional description which includes the 

accepted inputs and outputs. Nevertheless, the end-user views the entire WSDL 

description (the combination of search, spelling suggestions and cached pages) as a 

single service provided by Google. To prevent confusion, our notion of a service 
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should correspond to the one of the end-user. The high-level user interface 

information for this kind of service will thus often cover multiple OWL-S services. 

This means a number of OWL-S services will have to be coupled into a custom 

service description which is in turn linked to the abstract user interface. We define 

this as a service-interaction description, since it contains the necessary information to 

allow both machines and humans to easily interact with a particular service. 

The abstract user interface of service-interaction descriptions is based on a 

hierarchical task model which describes the tasks that can be performed by users in 

order to reach a goal. We describe this task model with the ConcurTaskTrees (CTT) 

notation [22]. Tasks can be decomposed into subtasks, resulting in a hierarchical tree 

structure. The deeper we go into the hierarchy, the more concrete the tasks are. The 

task model can be used to extract more concrete models, such as the dialog model and 

presentation model [19]. Elements from the dialog and presentation models are 

associated with leaf tasks8. The designer also has to link these leaf tasks to service 

components, which as a result provides the link between the user interface models and 

the service descriptions. The next section provides more details on how this allows 

the abstract user interface information to be translated to a concrete user interface. 

Fig. 2 shows the different components of a service-interaction description. It 

combines a hierarchical task model with a layout model and a number of OWL-S 

services. These services can be grounded into a single WSDL description for easy 

invocation by the concrete user interface. 

 

 

 

Fig. 2. An overview of the components of a service-interaction description. 

5   Producing the concrete user interface 

The previous section described how semantic web services were augmented with 

high-level user interface models. These models provide enough abstraction to be 

applicable for every computing platform. However, to be actually useful, they have to 

be translated into a concrete user interface for a specific platform. This section will 

discuss how we perform this transformation. 

First, we give an overview of the four levels of abstraction for multi-platform user 

interfaces, as defined by the CAMELEON Reference Framework [4] (sorted from the 
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most concrete to the most abstract level): (1) the Final User Interface (FUI) is the 

operational UI; (2) the Concrete User Interface (CUI) expresses any FUI 

independently of any markup or programming language; (3) the Abstract User 

Interface (AUI) expresses any CUI independently of any interaction modality (e.g. 

graphical, vocal, tactile, ...) via the mechanism of Abstract Interaction Objects (AIOs) 

as opposed to Concrete Interaction Objects (CIOs) for the CUI and Final Interaction 

Objects (FIOs) for the FUI; and finally (4) the Task and Concepts level, which 

describes the various interactive tasks to be carried out by the end user and the 

domain objects that are manipulated by these tasks. 

The service-interaction descriptions contain a hierarchical task model in the 

ConcurTaskTrees (CTT) notation [22], which corresponds to the Tasks and Concepts 

level. We assume that each client device knows how to transform a CUI to a FUI. 

This means the transformation process ranges only from the Task and Concepts level 

to the CUI. First, the task model should be transformed into an AUI, whereafter this 

AUI is transformed into a CUI. The next section discusses the first mapping, while 

Sect. 5.2 provides more details about mapping the AUI to a CUI, for which we use the 

UIML language. 

5.1  Annotating the task model 

In order to ease the transition from the task model to an AUI, we annotate leaf tasks 

with service components and AIOs. This requires the task model to be decomposed 

up to the level that each leaf task can be connected to a single AIO and service 

component. A service component can be an input or output of an OWL-S service or 

the service itself. 

An important step in the transformation to the AUI is the extraction of a dialog 

model. The dialog model is a State Transition Network (STN), modeling the possible 

states of the user interface. In each state, a “dialog” is conducted between the user and 

the system. We use the annotated task model to generate a corresponding dialog 

model [19]. Each state in this model is an Enabled Task Set (ETS). An ETS is a 

collection of tasks that are enabled during the same time period, which means they 

should be presented to the user simultaneously, i.e. in the same dialog [22]. 

In conclusion, our AUI consists of the annotated task model and the extracted 

dialog model. We now know of which states the user interface is comprised and 

which leaf tasks belong to these states. The fact that these tasks are annotated with 

AIOs and service components will prove useful in the next section. 

5.2  Widget selection through enhanced UIML metadata 

The next step is to transform the AUI into a CUI. As described earlier, we assume that 

each client device knows how to present a CUI to the user. For the CUI level, the 

User Interface Markup Language (UIML) [1] is used. 

UIML is an XML-based language to describe the structure, style, content, and 

behavior of a user interface. Unlike other user interface markup languages, UIML 

does not use metaphor-specific tags (such as window or button), but only generic 



tags (e.g. part, property, ...). These generic tags can be associated with a set of 

abstractions, defined in the peers section. The peers section specifies how these 

abstractions can be translated into a final presentation. Basically, the abstractions 

define a vocabulary of classes and names to be used with a UIML document. Since 

the vocabulary is specified separately, new devices and UI metaphors can be 

supported when they become available in the future. The CIOs will be defined by this 

vocabulary. 

We use UIML solely for the CUI level, because its level of abstraction is not 

sufficient for covering different platforms with widely varying interaction 

mechanisms. The vocabulary can only provide a very thin layer of abstraction above 

the target platform since it uses a one-to-one mapping of an abstraction to a final 

widget. If we situate UIML in the CAMELEON framework [4], it only covers the 

concrete and final level. The vocabulary can thus be seen as a one-to-one mapping 

from concrete interactors (CIOs) to final interactors (FIOs). Although it is possible to 

describe abstract interactors (AIOs) with UIML, we would then have to map them 

directly to FIOs. This is too big of a step to be feasible for every possible platform 

and interaction mechanism. 

The remaining problem now is how to perform a smooth transition from the AUI to 

UIML. Most tools (e.g. DynaMo-AID [6]) often only define this mapping internally. 

In our opinion, it is better to specify this information externally in a machine-readable 

way. 

An interesting approach to connect the different levels of abstraction is described 

by Demeure et al. [9]. They have exploited a semantic network of the concepts and 

relationships that are involved at each level of abstraction to pose interesting 

questions about a running user interface. For example, one could ask “What are the 

alternative CIOs for the CIO ListBox?” This would allow us to perform automatic 

widget remapping just by reasoning about the semantic network. Adaptation rules 

would not have to be hard-coded into the software or into the user interface design. 

Demeure's semantic network is defined in a custom format, which complicates 

interoperability with other software. With the advent of the Semantic Web [2] 

however, the Resource Description Framework (RDF) has been widely accepted as 

the standard format for representing knowledge.  

 

A semantic network built on top of UIML. We adopt the approach presented 

in [9] by Demeure et al., and adjust it to our system. We will use RDF to describe the 

UIML peers section and link it with an external AIO classification, thereby building 

our own semantic network. An additional advantage of using RDF is the easy 

integration with service-interaction descriptions, which are also described with RDF. 

Since the UIML vocabulary covers the concrete and final levels, the first step is to 

express this information with RDF. 

We defined a peers ontology9 by performing a straightforward mapping from 

UIML tags to OWL classes. The four concepts (and therefore OWL classes) defined 

in this ontology are: Presentation, DClass, DProperty, and DParam. A simple tool 

was developed to convert an original UIML vocabulary to its RDF representation and 

vice-versa. 
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In order to connect the concrete and abstract levels, we extend the ontology with 

the concept of an AIO and the relationship reifies. The reifies relationship works on a 

DClass and an AIO instance, to indicate that the former is a concretization of the 

latter. Note that we do not explicitly define an ontology of AIOs. Our ontology only 

defines the AIO concept, and the relationship that links it with a DClass. This 

approach is necessary to provide the same level of flexibility for the abstract level as 

the UIML vocabulary provides for the concrete level. It allows AIO classifications to 

be specified separately in external ontologies. The only requirement for this is that the 

different AIOs are specializations of our AIO concept, so that they can be linked with 

a DClass instance. 

Of course, in order to actually link CIOs with AIOs, we first need to define a set of 

AIOs that we can use. According to the definition from [4], AIOs should be modality-

independent. We will use a very high-level, minimal set of AIOs that are 

differentiated according to the functionality they offer to the user: (1) input 

components allow users to enter or manipulate data; (2) output components provide 

data from the application to the user; (3) action components allow a user to trigger 

some functionality; and finally (4) group components group other components into a 

hierarchical structure. We define these four AIOs (Input, Output, Action and Group) 

in an external ontology as the only instances of the AIO concept of our peers 

ontology. 

 

Adding data types. A disadvantage of the generic, modality-independent AIO 

classification we just discussed is the fact that each AIO applies to a large number of 

CIOs. This means that extra information is required in order to select the correct CIO 

for a given AIO. The service description provides us with the associated data type, 

which allows us to narrow down the number of possible CIOs. Consider for example 

the AIO Input. This AIO can map on different CIOs such as a combo box, a spin box, 

a text entry, a check box, a radio button, or a calendar. However, if we add the 

constraint that the data type should be a boolean, our choice is automatically limited 

to the check box and radio button. 

The concept DataType and the relationship hasDataType was added to our peers 

ontology, in order to relate DClass instances with a data type. Again, data types can 

be defined externally, to allow for maximum flexibility. We created a data type 

classification, based on XML Schema10. The ontology consists of the primitive types 

of XML Schema (e.g. decimal, string, void, etc.) in addition to a number of 

data types which are often used in user interfaces (e.g. Image, Color, etc.). 

The leaf tasks that are annotated with an AIO and a service component provide the 

necessary information to be mapped on a concrete interactor. Sect. 5.1 defined a 

service component as an input or output of a service, or the service itself. Inputs and 

outputs have an associated type, while the service can be linked with the data type 

Void. However, inputs and outputs of a OWL-S service are often associated with 

semantic types, which are arbitrary concepts (e.g. Price). It would be unreasonable to 

require each OWL-S service to use our own data types. We therefore allow a service 

developer to link semantic types with their corresponding data type (e.g. Price could 

be linked with Float). This technique allows us to associate inputs and outputs of a 
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service with elements from the data type ontology, while retaining the semantics of 

the existing OWL-S service. To do so, we extend the peers ontology with the 

relationship associatedDataType that can links arbitrary concepts with a DataType 

instance. When a leaf task is associated with an entire service (linked to the data type 

Void), it will also be coupled with the AIO Action. This is to indicate that a leaf task 

invokes a certain service. An example of a CIO that is associated with the AIO Action 

and the data type Void is a Button. 

A final requirement to translate an AIO and data type to a CIO, is to indicate 

through which DProperty the DClass is associated with the data type. For example, 

the DClass Label can be associated with the AIO Input and the data type String, 

through the property text. We add the relationship hasDataTypeProperty to the peers 

ontology for this purpose. A UIML renderer should know how to translate each 

element from the data type classification to its platform-specific data type (e.g. 

String to java.lang.String). 

 

Conclusion. The metadata we added on top of the UIML vocabulary defines a 

mapping from an AIO and data type tuple to a certain CIO. Fig. 3 gives an overview 

of the different concepts we introduced, and the relationships between them. Note that 

the puzzle piece on the far right represents an arbitrary concept that can be linked to a 

DataType instance. 

 

 

 

Fig. 3. The different concepts in the semantic network and the relationships that connect them. 

The extended UIML vocabulary that was introduced here will represent a target 

platform's interactive capabilities. When a client device wishes to use a certain 

service, it sends this description to the Service Manager, as discussed in Sect. 3. In 

order to translate the AUI to a CUI, which is described with UIML, we use the 

following process. For each ETS in the dialog model, the enabled tasks are translated 

to corresponding CIOs, using the associated AIO and service component. To arrive at 

a concrete UIML user interface, a skeleton UIML description could be used, which 

would be filled in with the CIOs from the previous step. However, this is not an ideal 

solution for graphical user interfaces (GUIs). After all, static positions for the CIOs or 

even a standard layout will not scale between widely varying screen sizes and in 

addition could seriously affect the usability of the resulting user interface. The next 

section introduces a layout model, which we developed to overcome this problem. 



6   Specifying the layout 

This section will present a layout model, which is an extension of our approach 

targeted to graphical user interfaces, as discussed in the previous section. Existing 

work has been done in specifying the layout on the abstract user interface level, but 

relations between AIOs on this level are hard to map onto a concrete layout. We will 

therefore focus in this work on the graphical modality. The use of a layout model is 

still justified because there is a need for a certain amount of flexibility which cannot 

be obtained by a static layout specified at design time. 

6.1  Current approaches 

The most common approach to specify the layout in model-based user interface 

development is to group AIOs. An example of this is the hierarchically structured 

Logical Windows abstraction [10]. Combining AIOs under a Group AIO parent will 

guarantee that these components will stay logically grouped in the concrete user 

interface. 

The way group AIOs are represented in the CUI will affect the eventual positions 

of their children. For example, group AIOs can be mapped onto a horizontal box 

container, which means their children are positioned on a horizontal line, from left to 

right. Group AIOs can be part of another group AIO, which allows a nested layout 

specification. However, the UI designer has only limited control over the final layout 

with this technique. 

A pattern-based approach such as described in [24] and [18] defines layout patterns 

that aggregate interface elements into a specified graphical layout. In practice, these 

layout patterns represent simple layout containers (eg. a horizontal box). The 

corresponding layout model consists of layout patterns written beforehand in a 

template language. This technique works on a more concrete level, giving the 

designer a good idea of what the final UI layout will look like. However, from a 

modeling perspective it would be better if a designer could specify his own templates 

within the layout model instead of using a template language. 

Another way of expressing a more concrete layout is by the use of spatial 

constraints on abstract UI elements [7]. This technique has been covered in many 

publications, such as [3] or [12]. Usually there are two approaches for obtaining these 

layout constraints: the designer can explicitly specify the required constraints (by 

means of a visual tool or by using a declarative constraint language) or constraints can 

be generated automatically. The latter uses either visual cues [17] or external ones 

such as data relationships. 

Allen constraints express relationships between time and space intervals [16]. By 

specifying Allen relationships between AIOs we can express both spatial relationships 

for visual layout and temporal relationships for non-visual interfaces. Allen 

relationships have to be mapped onto a more concrete level, much like group AIOs. 

We wish to work on a more concrete level to avoid exposing the designer to this 

mapping problem inherent to the use of group AIOs and Allen relationships in layout 

design. 



6.2  Layout Model 

In this section we present a tentative approach for specifying a layout model that can 

be applied on the CUI level. By specifying layout on a concrete, 2D graphical level 

we avoid the AUI layout abstraction problem. We try to preserve the hierarchical 

structure introduced by group AIOs, enable reuse of patterns and allow concrete 

spatial constraint relations. However, we still need some of the abstractions provided 

by AIOs as we cannot predict the specific target platform. As seen in Fig. 4, the 

layout model consists of two parts, a set of layout templates and one of layout 

instances. 

A layout template describes the structure of the layout, using hierarchical layout 

elements and layout relations representing spatial constraints between these elements. 

In Fig. 4, the root layout element of the template represented has three child elements, 

two leaf elements and one nested layout element which has three children of its own. 

The arrows between sibling layout elements represent the layout relations that exist 

between them. A layout template needs to be instantiated with AIOs and related with 

a certain state from the dialog model to be able to provide a concrete UI description. 

The resulting layout instance will describe the mapping between the abstract layout 

elements and AIOs for a single dialog. AIOs are connected to layout elements using 

layout instances to enable reuse of the layout templates. 

 

 

 

Fig. 4. Instantiating a layout template with AIOs. 

The structure of a layout template is described by hierarchical layout elements. 

These layout elements are equivalent to group AIOs; they provide a logical window 

and can be nested to create a hierarchy, as explained earlier in Sect. 6.1. A logical 

window in this context means that layout relations can only be defined between 

siblings and their parent element. Layout templates differ from group AIOs in that 

they use geometric relations between the elements they contain to describe the actual 

graphical layout. 

We currently use a simple set of linear geometrical constraints as an example: 

align-top, align-center, left-of, under, above, etc. In addition we also add some more 

complex relations: horizontal box and vertical box containers. Layout relations are 

abstract enough to support other types of constraints. A layout template contains a 

reference to a single layout element and a collection of layout relations. The 

referenced layout element acts as the root node of a hierarchy of layout elements. The 

collection of layout relations contains geometric constraints expressed between the 

elements of that layout element hierarchy. 



A layout element in a template is a placeholder on which layout relationships such 

as geometric constraints are defined. During the instantiation of the layout template 

we can fill these placeholders with AIO elements from the abstract user interface 

model. A layout instance describes the mapping between layout elements and AIOs. 

The layout instantiation process has two main requirements. AIOs used in an 

instantiation have to be coupled to tasks inside the same Enabled Task Set (ETS) [22] 

from the dialog model. By definition, tasks in different enabled task sets cannot be 

shown at the same time. The designer will thus create a layout for each ETS. As a 

second requirement, we prohibit layout templates to be instantiated with group AIOs 

As mentioned earlier, group AIOs can be used to logically group AIOs on the AUI 

level. Since the layout inside group AIOs is unspecified, it is not possible to 

instantiate a layout element with a group AIO without using default layout rules. 

However, this would defeat the purpose of our layout specification. It is up to the 

designer to split the layout elements to allow a one-to-one mapping. 

For this work, we use UIML to specify the concrete user interface. However, our 

layout model is generic enough to be mapped on other CUI representations. We 

generate a skeleton UIML description based on the layout instances. This skeleton 

contains the structure of the UI expressed as nested part elements. The instance's 

layout constraints will be mapped onto the UIML layout extension we developed 

in [20]. The specific DClass of the child parts in this skeleton will be filled in by the 

widget selection as explained earlier in Sect. 5.2. Our technique offers a certain 

amount of flexibility in the layout by the use of spatial layout constraints and a 

hierarchical layout specification. 

7   Case Study 

We clarify our approach by applying it to a mobile city service that allows people to 

share pictures with each other. Users can rate each picture of which an average rating 

is computed. The remainder of this section provides a walkthrough of the 

development of this service, which consists of four steps as shown in Fig. 5. 

 

 



 

Fig. 5. The service-interaction description corresponding to a selected part of the photo sharing 

service. 

To integrate the photo sharing service within our system, we need to create a 

service-interaction description which consists of a collection of services and a task 

and layout model. We extended the existing DynaMo-AID tool [6] with support for 

developing service-interaction descriptions. For brevity's sake, we will focus only on 

the functionality and corresponding user interface to show the details of a single 

picture. This allows users to take a look at the picture, view its average rating, and add 

a rating of their own. 

7.1  Collecting the required services 

The first step is to import the necessary OWL-S services, which corresponds to step 

(1) of Fig. 5. The required services for viewing a picture's details are: (i) a service to 

retrieve a single picture; (ii) a service to get the average rating of a picture; and 

finally, (iii) a service to rate a certain picture. Fig. 5 shows these services and their 

semantic input and output types. 

7.2  Creating the task model 

After importing the OWL-S services, the next step is to create a hierarchical task 

model that specifies how users will interact with the photo sharing service. The task 

model should be decomposed up to the level where every leaf task can be annotated 

with a single AIO and service component. Afterwards, the task model is used to 



extract a corresponding dialog model (that is constituted of a number of Enabled Task 

Sets). 

The part of the task model we will discuss is the interaction task View Selected 

Picture and its four subtasks, as shown in step (2) of Fig. 5. The task View Picture is 

annotated with the Output AIO and Image data type. View Rating and Enter Rating 

are both linked to the data type Rating, while the former has the AIO Output and 

the latter the AIO Input. Finally, the Submit Rating task is annotated with the Action 

AIO and Void data type. 

At this point, we should also map the semantic types of the inputs and outputs to 

our data type classification, as described in Sect. 5.2. For example, Rating will be 

mapped to StringEnum. 

7.3  Creating or reusing a layout template 

Before designing the layout we need the ETS containing the tasks we discussed in 

step (2) of Fig. 5. This gives us an overview of the tasks and attached AIOs that need 

to be presented in a single dialog. Although an existing template (or even some of its 

parts) could have been reused, we create a layout template from scratch here to 

illustrate our technique. The layout template in step (3) is constructed by drawing a 

couple of boxes which represent the layout elements. The shape and size of the boxes 

are irrelevant, but their relation to each other is. The nesting of these boxes represents 

the hierarchy of the corresponding layout elements. 

After constructing the layout element hierarchy, the designer adds layout relations 

to the template. Layout relations are specified explicitly by selecting the target 

elements (for example the two middle boxes) and by applying a geometric constraint 

(e.g. align right). 

7.4  Instantiating a layout template 

Step (4) in Fig. 5 depicts the instantiation of the layout template that was just created. 

First, the designer selects an ETS. The AIOs linked to the tasks in this ETS can then 

be connected to leaf layout elements in the layout template. In our example, the set of 

AIOs provided by the ETS is insufficient to specify the desired user interface. To add 

the labels “Average Rating” and “Your Rating” the designer needs to create two 

additional AIOs using the existing presentation model functionality in the DynaMo-

AID tool [6]. The data attached to these AIOs uses the same vocabulary as explained 

in Sect. 5.2 to enable widget selection. This instantiation process is repeated for each 

ETS in the dialog model. The service-interaction description is now complete. 

7.5  The resulting user interface 

After integrating the service-interaction description in our system, users can 

interact with the photo sharing service. To do so, their client sends a service-

interaction request along with its extended UIML vocabulary to the Service Manager, 



as discussed in Sect. 3. The Service Manager then replies with a platform-specific 

UIML description of the corresponding user interface. Finally, the client renders the 

UIML code, and presents it to the user. Fig. 6 shows two examples of the resulting 

user interface on different platforms: (a) a PDA with the Windows Mobile operating 

system and Windows Forms toolkit; and (b) a Smartphone with the Symbian 

operating system and UIQ toolkit. Note that the photo sharing service has no specific 

knowledge of either of these two platforms. It just uses the metadata added to the 

UIML vocabulary and the specified layout instances to map the abstract user interface 

to a concrete one. 

 

  
 

                                            (a)                                    (b) 

Fig. 6. The final user interface for the View Selected Picture task on two different platforms. 

8   Conclusions and Future Work 

This paper presented service-interaction descriptions which combine OWL-S services 

with high-level user interface models in order to present a suitable user interface on 

any target platform. We proposed a semantic network built on top of UIML to ease 

the transition of the abstract to the concrete user interface. Our general approach was 

extended with a layout model to obtain a more visually consistent and usable UI for 

the graphical modality. Finally, we illustrated our approach by applying it to a photo 

sharing service. 

We are exploring several directions for future work. First, we would like to verify 

the modality-independent design of the system by testing other modalities (e.g. 

speech). The layout model that was described in Sect. 4, would then have to be 

ignored since it is only useful for the graphical modality. Secondly, since it is possible 

to compose semantic web services, it would be interesting to investigate how the UI is 

influenced by this. For example, we could explore how the layout model can be 

modified to support this composition. In our own previous work [5] we have already 

taken a first step towards merging service UIs. We have shown a way to model 

service-aware user interfaces at the task level allowing the user interface of the main 

application and the one of the service to be merged into one consistent user interface. 



The assumption we made was that each service would have a corresponding abstract 

user interface consisting of the same models as the main application. The work we 

presented here extends this technique at the presentation level of the user interface 

and explicitly links the service to the task specification. 

A difficult problem concerns inconsistencies between service UIs, since the 

average user cannot master more than a few different user interfaces. The layout 

relations used in this work have been fairly straight-forward. Alternative ways of 

obtaining and expressing layout could be found to make the layout design process 

both easier and more expressive. Finally, it would be useful to extend the semantic 

network to allow for more advanced CIO matching. For example, CIOs could be 

annotated with their required size, allowing us to automatically switch to a smaller 

CIO when the available screen space decreases. 
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